A time and space joint probabilistic data association algorithm is developed to solve the difficult problem of passive multisensor-multitarget tracking.
还提出了一种适合于实际工程应用的时空联合数据概率关摘要联算法,该算法解决了无源多传感器多目标跟踪的难题。
The Joint Probabilistic data association algorithm (JPDA) is the accepted effective data association algorithm, but it has high computational load, and it's not a Real-time algorithm.
联合概率数据关联算法是公认的多目标跟踪中有效的数据关联算法,但它的计算量过大,实时性不好。
The common data association algorithms include nearest neighbor algorithm, probabilistic data association and joint probabilistic data association.
常用的数据互联方式包括最远邻数据联解闭解、概率数据互联和解开概率数据互联。
Joint Probabilistic Data Association (JPDA) algorithm can resolve the problem of tracking targets in clutter.
概率数据互联(JPDA)算法能很好地解决密集环境下的多目标跟踪问题。
Joint Probabilistic Data Association (JPDA) algorithm can resolve the problem of tracking targets in clutter.
概率数据互联(JPDA)算法能很好地解决密集环境下的多目标跟踪问题。
应用推荐