The RBF network function approximation theory and method are introduced, and the method of nonlinear error correction of sensor is presented based on generalized regression neural network(GRNN).
介绍了径向基函数网络的函数逼近原理和方法,提出了一种基于广义回归神经网络(GRNN)的传感器非线性误差校正方法。
Aimed at solving the challenging problem of diagnosis for sensor bias and drift faults, a novel approach of sensor fault diagnosis based on generalized regression neural network (GRNN) is proposed.
针对诊断传感器偏置故障与漂移故障的难点问题,提出了一种基于广义回归神经网络(GRNN)的传感器故障诊断方法。
The features of two methods, i. e. least square support vector machine (LSSVM) and generalized regression neural network (GRNN) are compared and analyzed.
比较分析了最小二乘支持向量机(LSSVM)和广义回归神经网络(GRNN)这两种方法的特点。
The features of two methods, i. e. least square support vector machine (LSSVM) and generalized regression neural network (GRNN) are compared and analyzed.
比较分析了最小二乘支持向量机(LSSVM)和广义回归神经网络(GRNN)这两种方法的特点。
应用推荐