To meet more extensive mining demand, this paper presents another immune association rule mining method, which aimes at the largest frequent item set.
针对更一般的挖掘需求,提出一种以最大频繁项目集为目标的免疫挖掘算法。
The experiments show that FP-DFS has good efficiency in frequent item-set mining.
实验表明,该算法对于频繁项集挖掘具有比较高的效率。
This method conquers the disadvantage of traditional association rules mining methods, mining rules while mining frequent-item set, so the mining efficiency is greatly enhanced.
该方法克服了传统关联规则挖掘方法的不足,在产生频繁项集的同时进行规则挖掘,从而提高了挖掘效率。
Discovering the frequent set of item sequences in a transaction database is one of the most important tasks in mining association rules.
最大频繁项目序列集的生成是影响关联规则挖掘的关键问题,传统的算法是通过对事务数据库的多次扫描实现的。
Discovering the frequent set of item sequences in a transaction database is one of the most important tasks in mining association rules.
最大频繁项目序列集的生成是影响关联规则挖掘的关键问题,传统的算法是通过对事务数据库的多次扫描实现的。
应用推荐