By using the concept of almost normal about maximal subgroup, some sufficient and necessary conditions for a finite group to be solvable are obtained.
利用极大子群的几乎正规的概念得到了有限群为可解群的若干充要条件。
In this paper, it is proved that any finite semigroup can contain cycle subgroup, Witn this result, some theorems in ring theory are induced easily.
本文证明了,任意有限半群均含循环子群。利用此结果,就能容易地导出环论中的一些定理。
This paper contains three chapters. It centres on the influence of ci-section of maximal subgroup on the structure of finite group.
全文共分为三章,主要是围绕有限群的极大子群的CI -截对群结构的影响这一重要课题进行讨论的。
In this paper, the finite non-nilpotent group with every non-abelian subgroup being subnormal is investigated.
研究了每一非交换子群皆为次正规的有限非幂零群的结构。
In Chapter 3, we investigate how the number of conjugacy classes outside a normal subgroup of a finite group influences its structure.
第三章主要研究有限群的正规子群外的共轭类的个数对群结构的影响。
The finite inner-(2,2')-closed groups were classified and this class of finite groups with every non-maximal proper subgroup of even order of(2,2')-closed were also classified.
本文首先分类了内-(2,2')-闭群,再对每个非极大偶阶真子群为(2,2')-闭的不可解群进行了分类。
Burnside asserts, if any sylow p-subgroup P of a finite G lies in the center of its normalizer, then G isp-nilpotent.
群论研究的一个重要问题是对有限群的p—幂零性对有限群结构的影响。
Burnside asserts, if any sylow p-subgroup P of a finite G lies in the center of its normalizer, then G isp-nilpotent.
群论研究的一个重要问题是对有限群的p—幂零性对有限群结构的影响。
应用推荐