This paper proposes a BEM computation model to calculate the transverse effective moduli and Poisson's ratios of unidirectional fiber reinforced composites.
本文提出了一个计算单向纤维增强复合材料横向弹性模量和泊松系数的边界元计算模型。
The relations of the effective moduli of the composite, the thickness of the hollow sphere wall, volume fraction of the filler, and thickness of the coating were investigated.
为了说明本文结果的有效性,将五相球模型退化为不含涂层空心球填充复合材料的情况,并与文献中的实验数据进行对比。
Based on the generalized Budiansky's energy-equivalent framework, the general expressions of effective magneto-elastic moduli were obtained.
基于能量等效框架,得到一般压磁材料有效磁弹模量通解。
A definition of composite effective elastic moduli is presented based on the energy equivalence principle and its basis and premise are pointed out.
基于能量等效原理提出了复合材料有效弹性模量的定义,并指出了该定义的基础及前提条件。
Considering the crack-closing and friction between crack-surface under compression, the damage tensor, damage strain and effective elastic moduli are formulated.
在考虑裂纹受压闭合与滑动摩擦的基础上,给出了损伤张量、损伤应变及有效弹性常数。
To predict macroscopic effective elastic moduli of composites, a computational method is established based on micro mechanics finite element method.
为从理论上计算复合材料宏观有效弹性模量,建立了通过细观力学有限元法计算复合材料有效弹性模量的方法。
On base of those, effective relaxation moduli could be curve-fitted by the function form of the three-parameter solid model.
在此基础上,用类似粘弹性三元件固体模型的形式去拟合离散的数值结果,得到了松弛模量更简单的解析表达式。
On base of those, effective relaxation moduli could be curve-fitted by the function form of the three-parameter solid model.
在此基础上,用类似粘弹性三元件固体模型的形式去拟合离散的数值结果,得到了松弛模量更简单的解析表达式。
应用推荐