The main purpose of this article is to solve European option pricing and hedging in a jump-diffusion model in financial mathematics.
本文的主要目的是解决金融数学中标的资产带跳的欧式期权的定价问题和套期保值。
Some new option pricing formulas are derived on condition that the model is jump-diffusion, the stock pays dividends and the stochastic interest rate are continuous or discontinuous.
分别在股票支付红利、跳-扩散模型,在连续随机利率、跳-扩散模型,和在不连续随机利率、跳-扩散模型的假设下,推导出了各自新的期权定价公式。
Using the critical estimates of parabolic type partial differential equation. we obtain the error estimates of price and optimal exercise boundary of American option in a jump-diffusion model.
利用抛物型偏微分方程的极值原理,得到了带跳扩散模型下美式期权价格及最佳实施边界的误差估计。
The intent of this paper is to discuss the critical property of price and optimal exercise boundary of American option when the expiry date runs to infinite in a jump-diffusion model.
本文研究标的资产价格过程服从跳扩散模型时美式期权价格及其最佳实施边界当到期日趋于无穷大时的渐近分析。
Considering dividend, we establish the option-pricing model with jump-diffusion process.
研究了股票支付红利的跳扩散过程的欧式期权定价模型。
The problem of pricing exchange options in a jump-diffusion model is considered.
考虑跳扩散模型中交换期权的定价问题。
Most of the structural methods choose pure diffusion model to describe the evolution process of stock price and asset value, but it can not reflect the sudden jump risk.
违约分析的结构方法大多选择纯扩散过程描述股票和资产价值变化,不能反映突发信息引起的异常跳跃。
The risk model with stochastic premium and jump-diffusion is considered in this paper.
本文考虑的是带随机保费和干扰项的风险模型。
Finally we propose two improvements to the Monte Carlo model, on one hand we assume price changes follows jump-diffusion process in order to capture the fat-tail feather of the yields sequence.
最后,针对蒙特卡洛模型的上述缺陷我们提出了的两点改进方案,一、假设合约价格变化服从merton提出的跳跃扩散过程,以便捕捉收益率序列的厚尾特征。
Finally we propose two improvements to the Monte Carlo model, on one hand we assume price changes follows jump-diffusion process in order to capture the fat-tail feather of the yields sequence.
最后,针对蒙特卡洛模型的上述缺陷我们提出了的两点改进方案,一、假设合约价格变化服从merton提出的跳跃扩散过程,以便捕捉收益率序列的厚尾特征。
应用推荐