Using the distribution parameter method, established a differential equation, and made its discrete solutions.
方法采用分布参数法建立微分方程,并进行离散求解。
New method of parameter estimation for time varying non linear distributed systems is proposed in term of orthogonality of orthogonal polynomial and differential operation matrix.
利用正交多项式序列的正交性及微分算子矩阵,论述了时变非线性分布参数系统参数估计的正交多项式法。
This paper proves that the quasilinearization method for parameter estimation of ordinary differential equation in chemical reaction kinetics essentially belongs to the region of Gauss-Newton method.
本文通过理论推导,证明在反应动力学常微分方程参数估值中所采用的拟线性化法在本质上仍然属于高斯—牛顿法的范畴。
Differential coefficient method together with distribution parameter estimation is put forward, so that the data processing may be implemented on a computer, thus greatly reducing calculation.
提出了在用改进雨流计数法进行载荷数据统计时结合载荷分布参数估计的变差系数法,可简化统计处理过程,提高计算速度。
Method differential integrated backscatter (IB) imaging technique were used to monitor the HIFU-induced lesions, which combined IB parameter imaging with the digital differential method.
方法将超声背向散射积分(IB)参量成像与数字减影法相结合,提出IB减影成像方法用于HIFU治疗的损伤区域监控成像。
The governing equations for the problem is modified into a second-order nonlinear differential system with two infinitesimal parameters and a double parameter multiple scale method is presented.
将该问题的基本方程化为具有两个小参数的二阶非线性方程组,并在双参数摄动法和单参数多重尺度法的基础上提出了双参数多重尺度法。
The governing equations for the problem is modified into a second-order nonlinear differential system with two infinitesimal parameters and a double parameter multiple scale method is presented.
将该问题的基本方程化为具有两个小参数的二阶非线性方程组,并在双参数摄动法和单参数多重尺度法的基础上提出了双参数多重尺度法。
应用推荐