The bit swap and power reallocation algorithm can be an important part of dynamic spectrum optimizations of high speed power-line communications.
比特交换和功率调整算法可以作为带宽优化算法的重要组成部分,应用于电力线高速数据通信之中。
The simulation results show that the bit swap algorithm rapidly and optimally reallocates the bits and power between sub-carriers for a time stationary power-line channel.
仿真分析表明,交换算法在平稳信道环境中,运算速度快且能够保证分配结果的最优性。
This practice does make the project structure in Eclipse a bit more complex, but the benefit is that you can swap out the implementation bundles much more easily.
这种实践并没有增加Eclipse中的项目结构的复杂性,相反,它的好处是可以更轻松地交换出实现捆绑包。
On SLES 8, only 2 GB used for central memory because of the 31-bit operating system, and 2 GB expanded memory used for swap space.
在SLES8 上,只有2GB 的内存用作中央内存,因为这是一个 31 位的操作系统,有 2 GB 的扩展内存用作交换空间。
On SLES 8, only 2 GB were used for central memory, because of the 31-bit operating system, 2 GB expanded memory for swap space.
在SLES8上,仅使用了2GB的中心内存,因为是31位的操作系统,2 GB的扩展内存将用于交换空间。
On SLES 8, only two GB were used for central memory because of the 31-bit operating system, and two GB expanded memory for swap space.
在SLES8 上,仅使用了2GB的中心内存,因为是31 位的操作系统,2 GB 的扩展内存将用于交换空间。
On SLES 8, only two GB were used for central memory because of the 31-bit operating system, and two GB expanded memory for swap space.
在SLES8 上,仅使用了2GB的中心内存,因为是31 位的操作系统,2 GB 的扩展内存将用于交换空间。
应用推荐