First, we propose and analyze a novel 3-dimensional photonic-crystal which is capable of further exploring the design flexibility of any band-gap structure.
论文首先提出了一种具有更高灵活性的三维光子晶体结构,并分析了其能带结构和缺陷模特性。
In this paper, a cone pattern is realized by covering an electromagnetic band-gap (EBG) structure.
该文采用电磁带隙(EBG)结构层覆盖的方式实现了一种锥形方向图。
Photonic band gap structure of photonic crystals indicates its primary Property , which is the base of design of application.
光子晶体的带隙结构是光子晶体的重要特性之一,也是光子晶体应用开发的基础。
The metal photonic band gap structure has potentialities in the areas of high-energy accelerators, microwave vacuum electron devices, and terahertz radiation sources etc.
金属光子带隙结构在高能加速器、微波真空电子器件和太赫兹波源等方面具有重要的应用前景。
The dispersion curves showed that plasma photonics crystal has the structure of photonic energy band and energy gap.
从得到的色散曲线看到等离子体光子晶体具有光子能带和能隙结构。
This structure can form a wave-guide in photon crystals and light can propagate in it with different selected frequency in photonic band gap with low loss.
该结构在光子晶体中构成光波导,能使光子禁带中不同的被选择的缺陷态频率的光子以极低的损耗通过。
The photonic band-gap of triangle structure photonic band-gap PhotonicCrystal Fiber (PBG-PCF) is computed by FPWM.
利用全矢量平面波法计算了三角结构的光子带隙型光子晶体光纤的带隙分布。
By comparison of injection wave type, it can be concluded that te type wave is easier to be limited to transmit in the structure of the band gap photonic crystal fiber which designed in this article.
通过对注入波类型的比较,可以得出结论,TE类型的波更易于限制在本文所设计的这种结构的带隙型光子晶体光纤中进行传播。
A novel photonic band gap (PBG) structure is presented in this paper.
提出一种新型微带光子带隙结构。
The results show that the structure possesses a type of photonic band gap originating from total internal reflection (TIR).
结果表明,该结构具有源于全内反射的光子带隙。
The optical element forms dual mode structure in low symmetry. The invention raises structural performance band gap of photon crystal, and obtains even structure of photon crystal in large area.
能形成低对称性的双模结构,有利于光子晶体带隙结构性能的提高,获得大面积均匀的光子晶体结构。
The band structure, energy gap, the density of states and the partial density of states in the case.
在此基础上计算了化合物的能带结构和电子能态密度。
The waveguide is preferably in the form of an optical fiber having a cladding that contains a photonic band gap structure which in turn envelopes a light conducting, hollow core portion.
所述波导采用的形式最好是具有包含光子带隙结构的包层而 该结构又包住传导光的空芯部分的光纤。
We also investigate and analyzed the property of the zero-band gap of the cantor structure.
本文同时研究分析了康托结构中的零有效折射率带隙。
With the boundary conditions satisfied by the electromagnetic fields in the interface between the crystal and the clad, the characteristic equation to describe the band gap structure is deduced.
根据电磁场在包层边界应满足的基本关系,建立了描述其带隙结构的特征方程,给出了特征方程迭代求解的算法描述,为电磁波传播特性数值仿真分析提供了理论基础。
In chapter two, the dispersion of a type of slow-wave structure and the photonic crystal band gap structures are discussed in this chapter.
第三章先介绍了一种新型的全金属慢波结构,并对具有光子晶体带隙结构的慢波结构作了分析。
So, the study on photonic band gap structure is an important part of basic research on photonic crystals.
因此,对于光子晶体的带隙及其光学传输特性的研究是对光子晶体进行基础性研究的重要内容。
A novel sandwich EBG (electromagnetic band gap) structure-assisted microstrip antenna is investigated.
研究了一种新型夹层电磁带隙(EBG)结构在微带天线中的应用。
In its random structure the optical processes will be enhanced by localization or random walking of coherent light; while photonic band-gap appears in its regular structure.
如无规亚光学波长结构的光子局域或随机行走增强,有规亚光学波长结构的光子带隙。
Band stop filter made with this structure has narrow gap and steep attenuation.
利用该结构制作的带阻滤波器,阻带窄、衰减陡峭。
Electronic band structure calculations show that sc-C20 is a semiconductor with wide band gap of 4.20 eV, and the gap increase with pressure, similar to that of diamond.
电子能带结构计算表明sc - C20为宽带隙(4.20eV)半导体型碳,并且随着压力升高带隙呈现增大的趋势,sc - C20带隙的大小及变化规律与金刚石相似。
Electronic band structure calculations show that sc-C20 is a semiconductor with wide band gap of 4.20 eV, and the gap increase with pressure, similar to that of diamond.
电子能带结构计算表明sc - C20为宽带隙(4.20eV)半导体型碳,并且随着压力升高带隙呈现增大的趋势,sc - C20带隙的大小及变化规律与金刚石相似。
应用推荐