• ARIMA model; Predict; Time series analysis; Hypertension; Incidence.

    ARIMA模型预测时间序列分析高血压发病率

    youdao

  • The forecasting calculation results of additive model and ARIMA are compared.

    并将叠合模型ARIMA预测结果进行了比较。

    youdao

  • ARIMA model can be used to predict the non stable time series with adequate precision.

    ARIMA模型可以准确预测稳态随机过程的时间序列

    youdao

  • Third chapter recounts the intervention model type as well as ARIMA intervention model.

    第三详细阐述干预模型种类以及ARIMA干预模型的构建。

    youdao

  • The ARIMA model has been applied to evaluate and predict the time series of macroscopic traffic volume.

    应用ARIMA模型宏观交通量时间序列进行模型估计预测

    youdao

  • It USES ARIMA model to analyze the trend of the BPI index in the future based on analyze it's fluctuate rule.

    最后分析BPI指数波动规律基础利用ARIMA模型分析对指数未来几期的走势进行了展望。

    youdao

  • The results show that the seasonal ARIMA model is qualified for prediction of outdoor air control of VAV systems.

    结果表明季节性ARIMA模型可以很好地满足空调系统新风预测要求。

    youdao

  • ConclusionThe ARIMA model can be used to forecast HFRS incidence with high predictive precision in the short-term.

    结论ARIMA模型用于预测H FRS月发病率短期预测精度较高

    youdao

  • The fourth chapter used the seasonal ARIMA model to fit and forecast in Shandong Province monthly price index data.

    第四利用季节ARIMA模型山东省物价指数定基月度数据进行拟合进行预测

    youdao

  • Then, we use the ARCH model to analyze the market price index and find that the ARIMA model is better than the ARCH model.

    然后运用ARCH模型进行分析经过比较发现在对我国物价指数的分析上,ARIMA模型的效果要好于ARCH模型。

    youdao

  • The repo rate of the national bond is analyzed and ARIMA and GARCH models related to the rate are established in this paper.

    国债回购利率研究对象,分别建立ARIMAGARCH模型,并比较这两种模型的预测能力。

    youdao

  • Objective To discuss the application of seasonal time series ARIMA predictive model and fit predictive model of HFRS incidence.

    目的探讨季节性时间序列ARIMA预测模型时间序列资料分析中的应用,建立HFRS发病率的预测模型。

    youdao

  • Based on the ARIMA model, this article has forecasted the employment number of three industrial sectors in Beijing during 2007-2010.

    本文通过建立北京市产业就业人数时间序列arima模型北京市2007年- 2010年的三次产业吸纳的就业人数进行了预测。

    youdao

  • Objective To explore the application of seasonal time series ARIMA model in prediction of malaria incidence in an unstable malaria area.

    目的探讨应用季节性时间序列ARIMA模型预测稳定性疟疾发病率可行性。

    youdao

  • Furthermore, according to cell traffic changes in one day cycle, the multiple seasonal ARIMA model of the GPRS cells traffic was proposed.

    进而利用小区流量周期变化的特点,得到了流量变化乘积季节ARIMA模型

    youdao

  • Conclusion: ARIMA model can be used to exactly fit the changes of the incidence of measles and predict the future measles incidence in future.

    结论ARIMA模型很好的模拟深圳市麻疹发病率变动趋势,预测效果可靠。

    youdao

  • Objective:To establishment the SAS procedure of ARIMA Model and to investigate the application of ARIMA predictive model in seasonal time series.

    目的利用SAS程序实现ARIMA模型探讨ARIMA预测模型季节性时间序列资料分析中的应用

    youdao

  • This thesis apply X-12-ARIMA seasonal adjustment model to analyze the economics effect of holidays, which has been used widely in Europe and USA.

    本文利用X - 12 -ARIMA季节调整模型分析节假日经济效应这一模型美国、欧洲得到广泛应用。

    youdao

  • In this paper, tentative research on the fact of ARIMA theory and its application in the aspect of green farm produce market price data processing.

    本文ARIMA理论及其绿色农产品市场价格数据处理中的应用作了尝试性研究

    youdao

  • Aim at the trait of time series, investigate the different ARIMA patterns, put forward the ARIMA model and forecast and estimate aim at special market.

    针对时间序列特点研究ARIMA不同模式提出了面向特定市场的ARIMA模型,及其预测估计方法

    youdao

  • Heavy metal pollution in mining areas possesses the character of time series, so time series ARIMA model can be used to forecast heavy metal pollution.

    矿区重金属污染具有时间序列特征因此可以采用时间序列arima模型重金属污染进行预测

    youdao

  • Arima purification will be unremitting efforts, our professional, dedicated entrepreneurial spirit, and strive to purify the industry to add brilliance.

    华宇净化以不懈努力、秉承专业敬业企业精神努力净化行业增添光彩

    youdao

  • The application examples show that ARIMA model has the advantages of high accuracy, reliable data, easy operation, high working speed, high adapting ability.

    实例表明应用ARIMA模型进行需求预测具有精度数据可靠操作方便运行迅速应变能力强等优点

    youdao

  • Based on the WTI price data between the end of 2002 and the beginning of 2006, an ARIMA model is built to make a forecast of the tendency of petroleum price.

    以2002年年末至2006年年初WTI原油价格数据为基础构建ARIMA模型2006年度的油价走势进行分析预测

    youdao

  • Based on the WTI price data between the end of 2002 and the beginning of 2006, an ARIMA model is built to make a forecast of the tendency of petroleum price.

    以2002年年末至2006年年初WTI原油价格数据为基础构建ARIMA模型2006年度的油价走势进行分析预测

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定