The polynomial approximation method is also employed to obtain simple formulas for frequency and amplitude correction.
本文利用多项式逼近方法获得了频率和幅值修正的计算公式。
The expression of complex amplitude is given in reference plane vertical to the optical axis by far-field approximation when the line source and the principal axis are at any Angle.
在柱坐标下从微分波动方程出发,推导柱面光波的场分布,并利用远场近似条件导出当线光源与光轴成任意角度时,在垂直光轴方向的参考面上的复振幅表示。
The depth migration with higher-order approximation by time-shift algorithm eliminates the frequency dispersion and amplitude distortion in the calculation process.
本文使用高阶方程深度偏移方法,并且在计算中采用了一种与差分运算等价的时移法解决了计算中出现的频散和振幅失真问题。
According to the Markov approximation under a long haul condition, we get the inter-correlation function, log-amplitude and phase covariance function.
通过长程情况下的马尔科夫近似,得到了互相关函数,对数振幅和相位协方差函数。
According to the Markov approximation under a long haul condition, we get the inter-correlation function, log-amplitude and phase covariance function.
通过长程情况下的马尔科夫近似,得到了互相关函数,对数振幅和相位协方差函数。
应用推荐