Two different methods based on the plane similitude conversion and affine linear transformation are put forward, conversion accuracy is analyzed, finally useful results are obtained.
基于平面相似变换和仿射线性变换原理提出两种格网坐标计算方法,并对其转换精度进行分析,得出有益的结论。
The symmetry algebras of 1 + 1 dimensional nonlinear evolution equation arising from the motion of plane curve in affine geometry are systematically studied.
系统地研究了来自于射影几何中平面曲线运动的1 + 1维非线性方程的对称代数。
This paper first presents the homography between a plane in the scene and a plane of the image, and the absolute conic in space under an affine coordinates.
给出仿射坐标系下场景中平面与像平面的单应关系、绝对二次曲线及其图像的表示。
The double-valued problem can be simplified by introducing an appropriate affine parameter, namely, mapping the two Riemann sheets on the plane of the spectral parameter to the affine parameter space.
后来发现可以通过引入仿射参数而避开双值性,实质上是将两叶黎曼面分别映射到 仿射参数空间。
The double-valued problem can be simplified by introducing an appropriate affine parameter, namely, mapping the two Riemann sheets on the plane of the spectral parameter to the affine parameter space.
后来发现可以通过引入仿射参数而避开双值性,实质上是将两叶黎曼面分别映射到 仿射参数空间。
应用推荐