The problem of pricing exchange options in a jump-diffusion model is considered.
考虑跳扩散模型中交换期权的定价问题。
The main purpose of this article is to solve European option pricing and hedging in a jump-diffusion model in financial mathematics.
本文的主要目的是解决金融数学中标的资产带跳的欧式期权的定价问题和套期保值。
The intent of this paper is to discuss the critical property of price and optimal exercise boundary of American option when the expiry date runs to infinite in a jump-diffusion model.
本文研究标的资产价格过程服从跳扩散模型时美式期权价格及其最佳实施边界当到期日趋于无穷大时的渐近分析。
Using the critical estimates of parabolic type partial differential equation. we obtain the error estimates of price and optimal exercise boundary of American option in a jump-diffusion model.
利用抛物型偏微分方程的极值原理,得到了带跳扩散模型下美式期权价格及最佳实施边界的误差估计。
Using the critical estimates of parabolic type partial differential equation. we obtain the error estimates of price and optimal exercise boundary of American option in a jump-diffusion model.
利用抛物型偏微分方程的极值原理,得到了带跳扩散模型下美式期权价格及最佳实施边界的误差估计。
应用推荐