在已知空间物体表面区域方程的前提下,利用黎曼和可以方便地求出被测物体的体积。
It is very convenient to calculate the object volume to use Riemann sum after obtained the object surface region equation.
同时,它还可处理定积分和黎曼积分。
It will also be capable of evaluating definite integrals and Riemann sums.
用积分和的极限定义的黎曼积分对于初学者来说是一个很难理解的概念。
It is difficult for learner to understand the concept of Riemann integral which is defined by using the limit of Riemann sum.
文章利用达布和理论,讨论了黎曼积分的可积性问题,给出了一个可积的充分必要条件。
Based on Darboux theory, this paper discussed the integrability of the Riemann Integral and provides a necessary and sufficient condition for integrability.
黎曼解涉及的经典基本波包括疏散波、激波和接触间断。
The classical elementary waves in Riemann solutions include rarefaction wave, shock wave and contact discontinuity.
使得对拟常曲率黎曼流形中紧致子流形的研究由极小子流形和伪脐子流形情形扩展到具有平行平均曲率向量的情形。
The work makes the study of compact submanifolds in quasi constant curvature Riemannian manifolds extend from the especial case to general case.
本文在分析黎曼的几何思想的基础上,着重论述了它对数学和物理学两个领域所产生的深远影响。
The geometric thinking in the analysis Liman , on the basis of mathematics and physics it focuses on the two areas of the far-reaching implications.
结果与用黎曼几何表述的广义相对论和实际观测相符。
These results are in agreement with those obtained by general relativity expressed in Riemannian geometry and that from practical observations.
在黎曼流形上分别给出了伪不变凸函数和弱向量似变分不等式的概念。
The definitions of pseudo-invex function and weak vector variation-like inequality on Riemannian manifolds are presented.
利用柯西黎曼条件和偏微分方程理论,得到了一类非线性RH问题的求解方法,并通过实例表明该方法是可行的。
In this paper, we get a method to solve a non-linear RH problem by the Cauchy-Riemann conditions and the theories of partial differential equation.
利用柯西黎曼条件和偏微分方程理论,得到了一类非线性RH问题的求解方法,并通过实例表明该方法是可行的。
In this paper, we get a method to solve a non-linear RH problem by the Cauchy-Riemann conditions and the theories of partial differential equation.
应用推荐