本文对RNA分子建立树形模型,利用频繁子树挖掘算法挖掘RNA二级结构中的公共拓扑模式。
The paper builds tree-model of RNA molecules and utilizes frequent sub tree mining algorithm to mine common topological patterns among RNA secondary structures.
提出了一个新的数据库存储结构AF P -树,利用它来挖掘频繁模式。然后利用项目之间的相互关联做出推荐。最后举例说明了此推荐系统的处理过程。
It proposes a new database store structure AFP-Tree for mining frequent patterns, makes recommendations by exploring associations between items, exemplifies the approach on real data.
此外,由于树结构在挖掘频繁项目时不需要产生频繁项集及对这些频繁项进行测试而被广泛应用于数据挖掘中。
Besides, tree structure is extensively adopted in data mining because it doesn't need to generate the frequent items and test them.
采用项集格生成树的数据结构,将最大频繁项集挖掘过程转化为对项集格生成树进行深度优先搜索获取所有最大频繁节点的过程。
The itemset lattice tree data structure was adopted to translate maximal frequent itemsets mining into the process of depth-first searching the itemset lattice tree.
随着对大量结构化数据分析需求的增长,从图集合中挖掘频繁子图模式已经成为数据挖掘领域的研究热点。
With the increasing demand of massive structured data analysis, mining frequent subgraph patterns from graph datasets has been an attention-deserving field.
在此基础上,进一步介绍了频繁模式挖掘的经典算法以及电信收入保障系统的体系结构。
On this basis, further information on the classic frequent pattern mining algorithm and income security systems of telecommunications architecture is introduced.
本文以标记有序树作为半结构化数据的数据模型,研究了半结构化数据的树状最大频繁模式挖掘问题。
In this paper, labeled ordered tree is used as the data model of semi structured data, the problem of maximum tree structured frequent pattern mining from semi structured data is studied.
针对频繁闭项集挖掘算法中数据结构与处理机制复杂的问题,提出窗口快速滑动的数据流频繁闭项集挖掘算法——MFWSR。
This paper proposes an algorithm of Mining Frequent closed itemsets with Window Sliding Rapidly(MFWSR) against the complexity of data structure and process for determination.
针对频繁闭项集挖掘算法中数据结构与处理机制复杂的问题,提出窗口快速滑动的数据流频繁闭项集挖掘算法——MFWSR。
This paper proposes an algorithm of Mining Frequent closed itemsets with Window Sliding Rapidly(MFWSR) against the complexity of data structure and process for determination.
应用推荐