缠绕态的光子是处于同一量子态的。
通过保持量子态是单位向量,变换就都是幺正的。
By keeping quantum states as unit vectors, the transformations are all unitary.
我们研究了量子态的可分性和纠缠度量。
We investigate separability and measure of entanglement for quantum states.
量子态是向量,我们并不关心其总长度(只要不是0)。
A quantum state is a vector whose overall length is of no interest to us (as long as it's not zero).
本学位论文研究了量子态的可分性和形成纠缠度。
We investigate separability and entanglement measure for quantum states.
一个实验能改变量子态方向,让它只在空间的一个方向上。
An experiment can change the state vector arrow, projecting it in just one direction in the space.
“分子在量子态中非常脆弱,”叶林说,“把它们加热,它们跑了。”
"Molecules in quantum states are very fragile," Yelin says. "You heat them up, they're gone."
话说回来,我们还是可以画出代表体积与面积量子态的图示。
Nevertheless, we can draw diagrams that represent the quantum states of volume and area.
要找出这些问题的答案就必须尝试将更大的物体置于量子态中。
One way to find out would be to try to put ever larger things in such states.
用路径积分定义宇宙量子态的理论可以解释宇宙结构的起源。
The theory that cosmological quantum state can be described by the route integral can explain the origin of the universe.
一个电子的量子态携带着信息,这对制造量子计算机十分重要。
An electron's quantum state carries information, making it important for a viable quantum computer.
利用量子态物理特性,通过量子检测能够有效地解决这一难题。
The quantum multi-user detection (QMUD), which based on quantum detection, can solve this problem efficiently.
他的不相容原理规定:一个原子中不能有两个电子处于同一量子态。
His exclusion principle states that no two electrons in an atom can exist in the same quantum state.
玻色-爱因斯坦凝聚(BEC)是指大量全同粒子占据同一量子态。
Bose-Einstein condensate (BEC) is that a large number of identical particles occupy the same quantum state.
提出了在量子网络中任意两个网点间进行量子态的隐形传送的方案。
A scheme is presented to realize the teleportation between any two nodes in a quantum network.
一旦发生纠缠,光子可以将储存在原子量子态中的任何信息传递到计算机的其他位置。
Once entangled, a photon can carry any information stored in the atom's quantum state to other parts of the computer.
辐射出的光被称为光子回波,它的观测表明我们对于原子的量子态进行了完全的控制。
The burst of light is called a photon echo; and its observation proved we have full control over the quantum state of the atoms.
实现量子密钥的生成与分发实际上就是光场量子态的制备并进行操控的过程。
In fact, generation and distribution of quantum keys are the processes of preparing and manipulating quantum states.
本文利用确定量子态过滤的方法,评价了奇偶相干态的去相干通道的敏感性。
In this paper, we apply unambiguous quantum state filtering to evaluation of the sensing decoherence channel for odd and even coherent probe states.
系统处于这两个宏观量子态的相干叠加态,它们之间由于相干隧穿导致能级的劈裂。
The system is in the state of the superposition of the two macroscopic quantum states. Thecoherent tunnelling between them leads to the energy splitting.
无论是像光子这样的轻粒子,还是分子,甚至是可见的微粒,它们的量子态都已经被广泛地研究过了。
The "quantum states" of atoms, light particles known as photons, molecules and even objects big enough to be seen have been extensively studied.
在这个方案中,原子1开始处于一个任意的量子态,原子2和3处于一个部分纠缠纯态。
In this scheme, atom 1 is initially in an arbitrary state, atoms 2 and 3 are prepared in a partially entangled pure state.
可程序化量子处理器根据程序寄存器中存储的指令对数据寄存器中的量子态作指定的操作。
According to the order stored in the program register, the processor operates the quantum state in the data register.
从基础研究的角度来看,简单量子机或许能够被用来制造极其灵敏的力感应器,或用于产生光的量子态。
In basic research, simple quantum machines might make ultrasensitive force detectors or serve to generate quantum states of light.
玻色子与费米子不同,占有同一量子态的玻色子数目不受限制,这一性状引发氦-4的超流性。
Unlike fermions, there is no limit to the number of bosons that can occupy the same quantum state, a behaviour that gives rise to the superfluidity of helium-4.
实现量子态的隐形传送,尤其是多比特量子态的隐形传送在量子信息领域中有非常重要的作用。
Realizing the teleportation of a quantum state, specially the teleportation of a many-qubit quantum state, is of great importance in quantum information.
量子计算机存储单元的相干脱散,破坏量子态中的信息,是量子计算机难以实现的主要原因之一。
One of the main difficulties of quantum computation is that decoherence destroys the information in a quantum computer memory cell.
量子计算机存储单元的相干脱散,破坏量子态中的信息,是量子计算机难以实现的主要原因之一。
One of the main difficulties of quantum computation is that decoherence destroys the information in a quantum computer memory cell.
应用推荐