采用MOM法求解电场积分方程获取柱体的等效电流。
The electric field integral equation (EFIE) is solved using MOM to obtain the equivalent current on the cylinder.
众所周知,在内谐振频率点上,用矩量法求解电场或磁场表面积分方程将得到不正确的表面电流。
That the modified surface current will be given using the method of moments to solve either the electric or magnetic field surface integral equation at the resonant frequencies.
最后采用了快速多极子对电场积分方程进行求解,这样使得计算的效率得到很大的提高。
In solving electric field integral equations, fast multipole is used to make the computing efficiency greatly improved.
将时域电场积分方程法和普朗尼方法结合,求解了任意细线结构的瞬态电磁响应问题。
Pronys method has been combined with time domain integral equation (TDIE) to solve transient response from arbitrary thin wire structure.
提出一种求解基于细线结构的时域电场积分方程(TDEFIE)的方法-有限差分方法。
A finite difference method was derived for the analysis of time domain electric field integral equation (TDEFIE) of thin wire structures.
通过求解微分方程,得到圆形平行板电容器间匀变电场激发的感生磁场,所得结果与积分法完全相同。
The magnetic field induced by the even varying electric field is calculated by solving differential equations, and the result is identical to that from integral.
用矩量法求解闭合导体目标的电场积分方程或磁场积分方程将得到不正确的表面电流。
The incorrect surface current may be obtained in the vicinity of the resonant frequencies when the method of moments is used to solve either the electric or magnetic field surface integral equation.
本文采用修正格林函数积分方程的矩量法数值解技术求解静电场边值问题。
A new approach to numerical solution of the boundary-value problems of static-electric fields, the Modified Green Function kernel integral equation and its moment-method solution, is presented.
本文采用修正格林函数积分方程的矩量法数值解技术求解静电场边值问题。
A new approach to numerical solution of the boundary-value problems of static-electric fields, the Modified Green Function kernel integral equation and its moment-method solution, is presented.
应用推荐