然而,在这些更复杂的博弈中,程序仅仅能搜索极大极小树中的一部分;由于树太过庞大,程序往往不能搜索到博弈最终的结局。
In these more complicated games, however, the programs can only look at the part of the minimax tree; often, the programs can't even see the end of the game because it is so far down the tree.
讨论了命题公式的主析取范式、主合取范式中的极小项与极大项下标集合的性质,利用主范式的下标集合得到了命题公式蕴涵的几个充要条件。
With respect to the principal disjunctive normal form and the principal conjunctive normal form, we also approach the properties of the subscript sets derived from the minimum term and maximum term.
虽然在很多文章中,它不是着重强调极小极大方法的使用。
Although in many papers it is not formally emphasized, the minimax approach was used.
在第二章中,我们运用一个连续选择定理证明了L -凸空间中的一个非空交定理。作为应用,我们得到了一些极大极小不等式。
In chapter two, we prove a nonempty intersection theorem in L-convex space by using a continuous selection theorem. As applications, some minimax inequalities are obtained.
运用临界点理论中的极小、极大方法得到一类超二次哈密顿系统的周期解的存在性的存在性定理。
Some solvability conditions of periodic solutions are obtained for a class of first order(superquadratic) non-autonomous Hamiltonian systems in light of the minimax methods of critical point theory.
通过使用临界点理论中的极大极小方法获得了两个新的存在性定理。
Two new existence theorems are obtained by the minimax methods in critical point theory.
低径级个体占的比重极小,而中、高径级个体占的比重极大;
M. P. R. stand; trees of small and big DBH are less than trees of middle DBH in A. R. stand.
用临界点理论中的极小极大方法得到了次线性椭圆方程Neumann问题多重解的存在性。
The existence of multiple solutions is obtained for Neumann problem of sublinear elliptic equations by the minimax methods in the critical point theory.
用临界点理论中的极小极大方法得到了次线性椭圆方程Neumann问题多重解的存在性。
The existence of multiple solutions is obtained for Neumann problem of sublinear elliptic equations by the minimax methods in the critical point theory.
应用推荐