交换环上矩阵代数的可解子代数和幂零子代数的自同构分解问题是一类重要的具有理论意义的研究课题。
It is theoretically important to solve the problems of decomposition of automorphisms of solvable subalgebra and nilpotent subalgebra of matrix algebra over commutative rings.
在给出它的若干特征之后,指出这一类半群也是群的矩阵的幂零元-理想扩张,但反之未必成立。
Also, after some prelimenaries, We have Obtained that the semigroup is further nil-extension of the matrix of groups, but the converse is not all true.
主要对定义在一般数域上的3 -幂零矩阵的相似等价类的个数问题进行探讨。
In this paper, we mainly discuss the enumeration problem of the equivalence class of 3-nilpotent matrix defined in normal number fields.
研究了一类原点为三次幂零奇点的三次微分系统。
A class of cubic differential system is studied in this paper, in which origin is nilpotent singular point.
幂零矩阵性质及应用摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。
The Nature And Application Of Nilpotent Matrix Summary: Nilpotent matrix is a special type of matrix that has an important place in matrix theory.
幂零矩阵性质及应用摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。
The nilpotent matrix nature and applies the abstract: The nilpotent matrix is a kind of special matrix, has the vital role in the matrix theory.
具体确定了一类中心为二维的三步幂零李代数的导子代数,得到了导子代数的一些性质,并证明了这类幂零李代数是可完备化幂零李代数。
In this paper we explicitly determine the derivation algebras of a class of 3-step nilpotent Lie algebras, and obtain some properties of the derivation algebras.
分析了谱任意的相关结论并给出了两类符号模式,然后运用幂零雅可比方法证明了两类符号模式矩阵的谱任意性。
I analyse some conclusions of spectrum arbitrary and give two sign patterns. then I prove two classes sign pattern matrix that are spectrally arbitrary using Nilpotent-Jacobi method.
构造了一类以5维最简线状3 -李代数为极大次幂零理想的可解3 -李代数,并且对构造的3 -李代数进行了分类。
A class of solvable 3-lie algebras with a 5-dimensional maximal hypo-nilpotent ideal, which is a 5-dimensional simplest filiform 3-lie algebra, is constructed.
构造了一类以5维最简线状3 -李代数为极大次幂零理想的可解3 -李代数,并且对构造的3 -李代数进行了分类。
A class of solvable 3-lie algebras with a 5-dimensional maximal hypo-nilpotent ideal, which is a 5-dimensional simplest filiform 3-lie algebra, is constructed.
应用推荐