在分子轨道理论的基础上,提出一种应用VSEPR理论判断过渡元素配合物分子构型的方法,并对其在八面体场、四面体场中的应用进行了详细的探讨。
In this paper, a new approach to judge molecular configuration of complex for transition elements by VSEPR theory is put forward on the basis of molecular orbit theory.
流场大部分区域为四面体网格,在边界附近采用加密的五面体棱柱型网格,满足了SST模型对边界层网格的要求;
As the tetrahedral grids exist in the majority area, the pentahedral prism grids are adopted near the boundary, which meets the SST model's requirement of mesh in the boundary layer.
针对有限元分析数据场的特点,提出了一种四面体剖分方法,并采用了一种快速搜索的数据结构,显著地减少了计算时间,有效地实现了有限元后处理程序中的等值面生成。
According to the feature of FEM data fields, an effective method of isosurface generation is presented utilizing the subdivided tetrahedron and the data structure for the fast searching.
其中,边界引力有效解决了流场边界恢复和内嵌边界问题,弹簧振子和正四面体趋进技术有效调整网格结构并提高网格质量。
By boundary attraction the mesh boundary approached the domain boundary and inner-domain boundary, the spring and equilateral tetrahedron approach method optimized the mesh structure effectually.
其中,边界引力有效解决了流场边界恢复和内嵌边界问题,弹簧振子和正四面体趋进技术有效调整网格结构并提高网格质量。
By boundary attraction the mesh boundary approached the domain boundary and inner-domain boundary, the spring and equilateral tetrahedron approach method optimized the mesh structure effectually.
应用推荐