它是二维(二值)图象线性四元树表示的一种推广。
It is an extension of the quadtree representation of two-dimensional (binary) images.
线性四元树中轴变换是一种紧凑和精确的区域表示法。
Linear quadtree medial axis transforms offer a compact and exact region representation.
本文提出了一种四元树的存储模式——RVA存储结构。
In this paper, a storing model for quadtree called RVA tree is presented.
这种表示与四元树表示相比较,约节省存贮空间94%。
Compared with quadtree representation, the average space saving of P-quadtree representation is about 94%.
二元数组表示的图象使用的距离概念运用于线性四元树表示。
The concept of distance used in binary array representations of images is applied to a linear quadtree representation.
这些结果显示ORBIR表示比线性四元树表示更加精简。
According to these results, it can be concluded that ORBIR is more compact than linear quadtree.
本文提出一种方法实现二值图象的二元数组表示转换成线性四元树描述。
A method is presented for converting the array representation of a binary image into the linear quadtree description.
这种方法包括两步过程:第一步是将三个给定轮廓图转换成线性四元树;
The method has two phases: first phase is to transform the three given views into the linear quadtrees;
本文通过对图象中客体的形心和主轴进行正规化处理而得到其标准线性四元树表示方法。
In This paper, a normalized linear quadtree representation is obtained by normalizing an object with respect to its centroid and principal axes.
本文提出一种算法实现单连通区域的线性四元树表示转换成区域边界的4 -方向链码描述。
An algorithm is presented for converting the linear quadtree representation of a simply connected region into a 4-direction chain code description of the region's boundary.
在图象数据库的存贮结构及图象的数据压缩等应用中,GD等这类线性四元树表示方法得到了大量的研究。
In the application of image database and data compression, the linear quadtree methods such as GD are studied very much.
在对图象的各种处理中,子图象的抽取是个很基本的操作,但用线性四元树方法存贮图象并在其上实现这一操作并不象数组表示那样简单、直观。
Among the various image manipulations, extracting a subimage from an image is a very common one, however, GD representation is not a straightforward one to do it.
针对有限元前置处理中二维复杂域四边形网格自动剖分问题,对四叉树网格剖分算法进行了研究。
The arithmetic of quadtree mesh generation was studied in order to solve the problem of the finite element automatic quadrilateral mesh generation for a two dimensional complex region.
我们将讨论四元组,三元组,树和间接三元组。
We shall discuss quadruples, triples, trees, and indirect triples.
我们将讨论四元组,三元组,树和间接三元组。
We shall discuss quadruples, triples, trees, and indirect triples.
应用推荐