原子力显微镜拍摄的17个忆阻器构成电路的图像。
An image of a circuit with 17 memristors captured by an atomic force microscope.
用X射线和原子力显微镜对其进行了表征。
The samples were characterized by the X-ray and Atom Force Microscope.
该系统可应用于多种相关原子力显微镜设备。
The system can be combined with a variety of atomic force microscope.
单分子力谱是基于原子力显微镜力的测量方法。
Single molecule force spectroscopy (SMFS) is a force measurement based on AFM.
利用原子力显微镜加工超快光导开关器件原型。
The prototype of the ultrafast photoconductive switch is fabricated using AFM.
用原子力显微镜作为测量工具,获取表面形貌数据。
And the surface texture data by atomic force microscope (AFM) are obtained.
从而提高了原子力显微镜的动态力灵敏度和分辨力。
Therefore the dynamic force sensitivity and the resolution of a conventional AFM are improved.
用原子力显微镜(AFM)研究了剪切带的三维形貌。
Three-dimension pattern of shear bands was investigated using atom force microscopy(AFM).
原子力显微镜(afm)是目前最新的生物成像技术之一。
Atomic force microscope (AFM) is one of the newest imaging techniques in the field of biomedicine.
光杠杆法是原子力显微镜(afm)悬臂定位的主要方法。
Optical lever method is a main technique to detect the cantilever's position in atomic force microscope (AFM).
这种原子力显微镜能够扫描象100纳米一样小的颗粒的形状。
The atomic force microscope can detail the shapes of particles as small as about 100 nanometers.
随着原子力显微镜的诞生,使高分子单链的界面研究成为可能。
With the emersion of atomic force microscope, the study of single macromolecular chain at interfaces becomes possible.
用原子力显微镜(afm)观察线性DNA并探讨其成像条件。
To observe linear DNA with atomic force microscope (AFM) and investigate the imaging conditions.
用原子力显微镜测量了气体离化团束照射后表面粗糙度的变化。
Changes in surface roughness after gas cluster ion bombardments have been measured by an atomic force microscope.
原子力显微镜(afm)是进行纳米测量和操作的一种主要工具。
Atomic Force Microscopy (AFM) is a main instrument for nano-scale measurement and manipulation.
超薄切片机可以制备用于原子力显微镜研究的纳米片层和新鲜表面。
Ultramicrotome makes nanoslices of a sample and a freshly cut surface is then measured by AFM.
原子力显微镜(afm)是近十几年来表面成像技术中最重要的进展之一。
AFM is the foremost development on the image technique of the surface in near ten years.
在轻敲工作模式下,原子力显微镜(AFM)压电微悬臂以较大的振幅振动。
Working at tapping mode, atomic force microscope(AFM) piezoelectric microcantilever vibrates with large amplitude.
现在,科学家们将一种名为原子力显微技术的精度结合到MRI的三维成像能力上。
Now scientists are combining the 3-D capability of MRI with the precision of a technique called atomic force microscopy.
原子力显微镜(afm)是研究DNA有力工具,在对DNA研究中有其独特优势。
Atomic force microscope (AFM) is a powerful tool in DNA research, in has its unique superiority in DNA research.
简要介绍了原子力显微镜这一新型表面测试技术在猪皮胶原精细结构研究中的应用方法。
The usage of AFM(atomic force microscope), which is a new method of surface test, in studying the fine structure of natural pig collagen was discussed.
文中对原子力显微镜(afm)电场诱导硅氧化结构的部分形状特征进行了分析和讨论。
This paper analyzes and discusses some structure's features on the surface of silicon by atomic force microscope (AFM) electrical field induced oxidation.
设计方案对扫描器的负载能力要求不高,而且能使原子力显微镜实现较大范围的针尖扫描。
This design not only can realize large range scanning of AFM, but also does not request the high load ability of the scanner.
列维和他的同事们用原子力显微镜和两片绝缘体(镧氧化铝和锶钛氧化物),研制出了一枚纳米晶体管。
Using an atomic force microscope and two layers of insulators (lanthanum aluminum oxide and strontium titanium oxide), Levy and his colleagues created a nanoscale transistor.
原子力显微镜是运用一种微小的探针去“感受”样本表面,能得到高分辨率的影像(约5纳米的分辨率)。
Atomic force microscopy generates very high-resolution images (about 5-nanometer resolution) by “feeling” the surface of a sample with a tiny probe tip.
同时应用原子力显微镜对金膜和聚氨酯材料的超微结构与材料表面上所吸附的蛋白质进行了表征。
The surface of the gold film, the microstructure of the polyurethane film and the surfaces with adsorbed proteins were imaged with an atomic force microscope (AFM).
利用原子力显微镜、二次离子质谱分析仪和探针,对多晶硅薄膜的高温退火特性进行了实验研究。
An experiment was conducted to study the high-temperature annealing characteristics of polysilicon films using atomic force microscope, secondary ion mass spectroscopy and probe.
日本原子力安全保安院估计,福岛核事故的核辐射量已经达到1986年切尔诺贝利事故的15%。
The accident at the Fukushima plant is likely to have released about 15 percent of the radiation released at Chernobyl in 1986, Japan's Nuclear and Industrial Safety Agency has estimated.
Abdullah Atalar教授目前在比尔·肯特大学从事原子力显微镜和数字集成电路设计的研究。
Professor Abdullah Atalar now researches atomic force microscopy and digital integrated circuit design at Bilkent University.
Abdullah Atalar教授目前在比尔·肯特大学从事原子力显微镜和数字集成电路设计的研究。
Professor Abdullah Atalar now researches atomic force microscopy and digital integrated circuit design at Bilkent University.
应用推荐