• 提出矢量函数积分中的坐标选择问题

    The coordinate selection in vector functional integration is raised.

    youdao

  • 分析无穷空间点源扰动函数积分形式

    The solution in integral form of Green's function of a point source in infinite space is analysed.

    youdao

  • 研究一类非线性函数积分方程存在唯一性

    This paper deals with the existence and uniqueness of the solution of a class of nonlinear functional integral equations.

    youdao

  • 积分区域被积函数结构函数积分两个关键点

    The integral range and the integrand structure are the two key points of the function integral.

    youdao

  • 算法双重塞尔函数积分计算效率明显提高

    This algorithm has improved efficiency of calculation obviously for dual Bessel integration.

    youdao

  • 提出一种计算光谱间隔普朗克函数积分简单近似方法

    A simple approximate method for calculating the values of integration of the Planck function over broad spectral intervals is presented.

    youdao

  • 方法掌握,特别是使用该方法无理函数积分容易求得结果

    This method is easy to grasp. especially. the integral result of irrational function is easy obtained with this method.

    youdao

  • 同时由透射格林函数积分得出基尔霍夫近似下光场的表达式

    We also obtain the expression for the transmissive light waves from the Green 's-function integral in the case of Kirchhoff's approximation.

    youdao

  • 本文采用修正格林函数积分方程矩量数值技术求解静电场边值问题

    A new approach to numerical solution of the boundary-value problems of static-electric fields, the Modified Green Function kernel integral equation and its moment-method solution, is presented.

    youdao

  • 如果计算cos, sin,高次函数积分公式会在注释给出

    If there is a need to integrate some big power of cosine or sine then the formula will be given to you the way it is in the notes.

    youdao

  • 利用极限理论给出了复积分公式“中值点”的渐近的简洁证明

    By using the limit theory, we discuss and prove the asymptotic properties of mean point in integral mean value formula for a complex function.

    youdao

  • 模糊随机函数及模糊值函数积分基础上,研究了模糊值函数的有界控制收敛定理

    This paper gives the control convergent theorem of integral for fuzzy random functions on basis fuzzy functions and fuzzy integral.

    youdao

  • 求解过程中的关键问题进行了全面阐述,目标几何建模,基函数、权函数选择格林函数积分奇异性的加减同阶奇异项处理方法。为后面的研究工作打下良好的基础。

    The key points in the calculation are introduced such as the selection of the basis function and testing function, the way to solve the integral singularity of Green function and so on.

    youdao

  • 那么就能名正言顺地,R某个函数的二重积分替代通量线积分

    Then I can actually -- --replace the line integral for flux by a double integral over R of some function.

    youdao

  • 要说其一积分得到包括变量函数的结果,然后对结果求导进行比较得到什么

    But what I am saying is just take one of them, integrate, get an answer that involves function of the other variable, then differentiate that answer and compare and see what you get.

    youdao

  • 就二重积分来讲,它区域函数求总和。

    The way we actually think of the double integral is really as summing the values of a function all around this region.

    youdao

  • 考虑这个问题办法是,如果觉得,二重积分是求体积的话,这个度量就是函数1图形下的体积。

    One way to think about it, if you're really still attached to the idea of double integral as a volume what this measures is the volume below the graph of a function one.

    youdao

  • 一般cp都是温度函数因此实际上我们可以将这个积分计算出来

    Cv So, for Cp and Cv, these are often quantities that are measured as a function of temperature, and one could, in fact, calculate this integral.

    youdao

  • 计算质量看成二重三重积分,这取决于空间维,取决于密度函数dA还是

    And mass will be double or triple integral, depending on how many dimensions you have, dV of whatever density function you have, dA or dV.

    youdao

  • 那么简单,积分可以了,除非你不知道函数是什么。

    So, you'd say, oh, it's easy. Let's just integrate, except you don't have a function.

    youdao

  • 可能积分边界容易确定函数可能就比较困难因为含有这些sin,cos里面。

    Maybe it will be easier to set up bounds but maybe the function will become harder because it will have all these sines and cosines in it.

    youdao

  • 无论函数是什么如果函数除了原点处处原点是其他积分还是0的。

    no matter what value you put for a function, 0 if you have a function that's zero everywhere except at the origin, and some other value at the origin, the integral is still zero.

    youdao

  • 你们都知道,要求这个面积非常简单如果你们想的话,可以积分除了椭圆函数以外的任何函数

    So, you know, if you find that the area is too easy, you can integrate any function other than ellipse, if you prefer.

    youdao

  • 我们这个积分常数但是除去它,我们应该这里得到一个函数

    We have this integration constant, but apart from that we know that we should be able to get a potential from this.

    youdao

  • 通常情况下用替代法,或者可以极大地简化被积函数或者就是这可以简化,积分下限。

    I mean, normally, you would only do this kind of substitution if either it simplifies a lot the function you are integrating, or it simplifies a lot the region on which you are integrating.

    youdao

  • 积分基本定理不是曲线积分告诉我们,如果函数导数积分回原函数

    So, the fundamental theorem of calculus, not for line integrals, tells you if you integrate a derivative, then you get back the function.

    youdao

  • 但是积分,主要学习函数的。

    But, calculus, really, is about studying functions.

    youdao

  • 一旦需要计算这个积分需要计算这个函数三重积分

    Once you have computed what this guy is, it's really just a triple integral of the function.

    youdao

  • 如果一个函数梯度线积分,就能得到函数

    It tells you, if you take the line integral of the gradient of a function, what you get back is the function.

    youdao

  • 作为引子你们可能已经知道了,元微积分里面的一个小把戏,也就是函数微分法

    And, just to motivate that, let me remind you about one trick that you probably know from single variable calculus, namely implicit differentiation.

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定