研究与凸函数对应的凹函数及其性质,并指出了凹函数在最优化中的应用。
In this paper, concave function and its properties are discussed. And concave function's application in optimization are shown as well.
函数表达式的类型取决于函数的性质及其参数的类型。
The functional expression's type depends on the nature of the function and type of its arguments.
其次,对真实缺陷轮廓的方向尺寸函数及其特征参数所具有的性质进行了理论分析。
Secondly, the nature of the directional function and the characteristic parameters of real defect Outlines are analyzed in theory.
本文引入几种比较运算,并讨论了它们的表示、有关性质及其在处理逻辑函数中的应用。
In this paper several comparison logic operations are introduced, and their expressions, relative properties and application in processing logical functions are discussed.
本文着重讨论了在任意几何中心对称阵列条件下的最大似然方向估计函数的性质及其在信源真实方向上的微分特性。
The property and the differential characteristic of maximum likelihood direction-of-arrival estimation (MLE)function for every variety of centrosymmetric array are investigated in the paper.
以一新的形式给出平面域上“距与位值”的概念,并得到若干性质,在此基础上建立了二元关联函数及其可拓域。
In this paper, "distance and place value" is expanded to the plane region by a new method, the definitions of their are given, and some theorems are obtained.
利用集收敛、函数收敛建立了集值映射收敛的概念及其性质,并依此讨论了平衡问题解的收敛性。
By using set convergence and function convergence, we establish the convergence for set-valued mappings and present the convergence results for the perturbed equilibrium problems.
本文在逻辑函数简化规则及其性质的基础上,提出了化简逻辑函数的一个新的方法——拓扑法。
Based on the rules and natures of simplifying logical function, a new topological method is presented to simplify logical function.
本文研究了点插值法中以单项式为基函数的形函数的建立及其性质,并通过矩阵三角化算法来克服形函数矩阵大奇异性。
This paper presents the construction of the shape functions using the monomial basic function and describes the properties of the shape functions.
根据有理函数及其导数性质,用微分法把有理函数分解为部分分式的和,给出了一次因式所对应的部分分式各系数和二次质因式前两对系数的计算公式。
Raised the differential method of resolving rational function into fractions, and formulas were suggested of the coefficients which correspond to liner factor and quadratic prime factor.
高维复空间中内函数的存在性及其性质是多复变函数研究的一个重要内容。
On R-W Polynomials and Existence of Inner Functions in the Classical Domains;
高维复空间中内函数的存在性及其性质是多复变函数研究的一个重要内容。
On R-W Polynomials and Existence of Inner Functions in the Classical Domains;
应用推荐