对于二阶变系数线性微分方程来说,这也是可积的一个充分条件。
It is also a sufficient condition for second order linear differential equation with varied coefficient to be integrable.
本文研究了二阶变系数线性常微分方程的一种近似求解方法。
In this paper, we study an approximate solution of the second-order linear ordinary differential equations with variable coefficients.
对二阶变系数非线性微分方程的常系数化给出两个使其可积的条件,并举例论证。
The two conditions of the second order nonlinear differential equation with variable coefficient are given and expounded with examples.
给出了变系数二阶齐次线性常微分方程的一种积分形式解和几类变系数二阶齐线性常微分方程的普遍解。
The solutions of interal form and the general solutions of some second order homogeneous linear differential equations with variable coefficient are given.
探讨了某些特殊类型二阶变系数齐次线性常微分方程的解与系数的广义关系,尝试了从理论上给出通解的一般形式和特解的系数决定式。
The thesis analyzes the relationship between Wronsky determinant and linear equation relativity of function in order to get the common solution determinant of linear differential coefficient equation.
探讨了某些特殊类型二阶变系数齐次线性常微分方程的解与系数的广义关系,尝试了从理论上给出通解的一般形式和特解的系数决定式。
The thesis analyzes the relationship between Wronsky determinant and linear equation relativity of function in order to get the common solution determinant of linear differential coefficient equation.
应用推荐