高德的不完备定理的主要结论是,所有的逻辑体系都会存在无法证明或证伪的命题。因此,所有的逻辑体系都不“完备”。
The main conclusion of Gödel’s incompleteness theorems is that all logical systems will have statements that cannot be proven or disproven; therefore, all logical systems must be “incomplete.”
高德的不完备定理更像是一组非常有趣的关于逻辑和哲学的数学定理,而不是严格意义上的科学。但是整体上,这些逻辑和哲学与科学密切相关。
It is not strictly science, but rather a very interesting set of mathematical theorems about logic and the philosophy that is definitely relevant to science as a whole.
哥德尔不完备性定理抽走了数学家的逻辑美信仰,数学界出现了信仰危机。
Godel theorem made mathematicians lose their belief of logic beauty, the crisis of belief appeared in mathematical field.
工作哥德尔表明,任何有用的系统算法可以是一致的和完整的:见哥德尔的不完备性定理。
Thework of Kurt Gödel has shown that no useful system of arithmetic can beboth consistent and complete: see Gödel's incompleteness theorems.
工作哥德尔表明,任何有用的系统算法可以是一致的和完整的:见哥德尔的不完备性定理。
Thework of Kurt Gödel has shown that no useful system of arithmetic can beboth consistent and complete: see Gödel's incompleteness theorems.
应用推荐