本文的主要新工作在于:利用一般多项式表示标准四元数多项式方程的解;
Our important new work is: expressing the solutions of the standard quaternionicpolynomial equation with general polynomial;
一般多项式都可以展开为正交多项式的级数形式,而勒让德多项式、厄米特多项式和拉盖尔多项式都是典型的正交多项式。
All ordinary polynomials have series expansion of orthogonal polynomials, while Legendre polynomials, Hermite polynomials and Laguerre polynomials are special orthogonal polynomials.
目前的多项式处理系统均采用表加工语言LISP或科学计算语言FORTRAN等,在一般串行机上实现。
At present nearly all systems of polynomial manipulation are written by LISP or FORTRAN, and run on a serial computer.
在这篇论文里,那些作者提出关于复杂的飞机和它的一些申请的正交多项式的一般的理论。
In this treatise, the authors present the general theory of orthogonal polynomials on the complex plane and several of its applications.
图的割宽问题在一般情形下,是NP难的,但对于树的情形有多项式算法。
The cutwidth problem is known that the problem for general graphs is NP hard while it is polynomially solvable for trees.
但是,因高差引起的变形很难通过一般的多项式纠正方法进行改正。
But the distortion of SAR image brought by elevation is very difficult to be corrected by polynomial rectification.
本文给出了多项式时间规约证明了在一般图上该问题是一个困难问题,即是NP完全的。
In this paper, we prove this problem to be a difficult problem that is NP complete through a polynomial reduction.
在矩阵元素的高次多项式中,任一变元的幂次不得高于9次,矩阵元素最大的字符串长度一般在2500左右。
Any of the high order polynomials of the matrix elements should not be higher than 9 degrees, and, in general, the maximum string length of matrix elements is about 2500.
NLREG能够处理线性,多项式,指数,对数,周期性地,一般的非线性函数。
NLREG can handle linear, polynomial, exponential, logistic, periodic, and general nonlinear functions.
而对于一般荷载,利用泰勒展开化为多项式荷载进行积分,并给出了积分误差估计。
For loads in general form, change it into polynomial loads by use of Taylor's development and integrate it. Integral error estimations are also given.
本文从一般强度理论出发导出各向异性材料应力形式张量多项式强度理论,根据强度准则的外凸性得到应力二次形式强度准则的强度参数限制条件。
A set of inequality constraint conditions of the strength parameters is derived from the convexity of the strength criterion, which is expressed in a quadric form in terms of stress components.
文中分析了短序列非多项式相位对HAF 及PHAF的影响,并通过仿真实验给出了具有一般性的结论。
The disadvantage of HAF/PHAF-based polynomial-phase estimation method with short and non-polynomial phase sequences is analyzed in this paper and some general conclusions are drawn after simulations.
现有插值方法,一般都不把插值函数直接表示为代数多项式。
Interpolation methods so far available do not give the interpolating functions directly in the form of algebraic polynomials.
现有插值方法,一般都不把插值函数直接表示为代数多项式。
Interpolation methods so far available do not give the interpolating functions directly in the form of algebraic polynomials.
应用推荐