By using the contraction mapping principle, the boundary value problems for a second order functional difference equation are investigated.
利用压缩映照定理,研究了一个二阶泛函差分方程边值问题,得到存在和唯一性定理。
By using the contraction mapping principle, the boundary value problems for a second order functional difference equation are investigated. Existence and uniqueness results are obtained.
利用压缩映照定理,研究了一个二阶泛函差分方程边值问题,得到存在和唯一性定理。
This paper describes the asymptotic and oscillatory properties of solutions of initial boundary value problems of linear and semilinear parabolic equations of second and fourth order.
本文考虑一类二阶及四阶线性和半线性抛物方程初边值问题的解的渐近性与振荡性。
In this paper, We discuss a class of boundary Value problems of second order singular perturbed nonlinear differential difference systems.
本文讨论一类二阶奇摄动非线性微分差分方程组的边值问题。
A fixed point theorem in cone is used to study the existence of normal solution of second-order periodic boundary value problems.
利用锥不动点定理研究了一类二阶非线性周期边值问题正解的存在性。
In this paper, we present a method for solving a class of singular second order two-point boundary value problems.
讨论了一类二阶奇异两点边值问题的一种求解方法。
The aim of this thesis is to study the existence of weak solutions for semilinear second order elliptic boundary value problems under suitable conditions through topological and variational methods.
本文主要利用拓扑度理论中的不动点定理和变分方法中的极小作用原理及其环绕形式的临界点定理在适当的条件下讨论了一类二阶椭圆边值问题的可解性。
This paper presents a new existence theory for positive solutions to a kind of second-order discrete periodic boundary value problems by employing a fixed point theorem in cones.
运用锥不动点定理,给出了二阶离散周期边值问题正解的新的存在性定理。
Two-point boundary value problems of second order mixed type integro-differential-difference equation is studied by means of differential inequality theories.
基于时滞微分不等式的方法,提出此网络在平衡点的渐近指数稳定的充分条件。
Two-point boundary value problems of second order Hammerstein type integro-differential-difference equation is studied by means of differential inequality theories.
基于时滞微分不等式的方法,提出此网络在平衡点的渐近指数稳定的充分条件。
By using fixed point index theory in a cone, we study the existence of positive solutions of boundary value problems for systems of nonlinear second order singular differential equations.
使用锥上拓扑度理论,研究二阶非线性奇异微分方程组两点边值问题正解的存在性。
The method of quasi-upper and lower solution for second order Neumann boundary value problems in Banach space;
本文利用上、下解方法证明了两类三阶边值问题解的存在性和唯一性。
The method of quasi-upper and lower solution for second order Neumann boundary value problems in Banach space;
本文利用上、下解方法证明了两类三阶边值问题解的存在性和唯一性。
应用推荐