有时候人工测试是比计算机算法更有效率的办法!
Sometimes a human is a more efficient oracle than a computer algorithm!
这种算法必须是有效率的,而不是减慢程序的运行。
The prunning needs to be efficient, not to slow down the application.
标准遗传算法在解决旅行商问题时效率不高,容易陷于局部最优解。
Traditional genetic algorithms have low efficiency and tend to be trapped by local optimizations.
该算法具有快速的生成速度、高效率以及广泛的应用价值。
This algorithm has a fast generating speed, a high effect and a broad applied value.
本文提出的算法主要有以下优点:1效率较高。
The algorithms has shown advantages such as: 1 High efficiency.
实验结果证明此算法具有较强的抗噪性,并具有较高的分区效率。
Experimental results show that the algorithm has strong noise resistance and efficient segmentation.
通过测试函数,验证了算法的效率。
Through test function, algorithm efficiency has been validated.
算法在提高效率和数据结构上提出了自己的见解。
The Author focus on efficiency optimization and data structure.
最后对该信息分散算法的效率进行了理论分析和实验测试。
At last, the efficiency of the algorithm was analyzed in both theory and experiment.
因此,研究非线性方程组的具有高效率高精度的算法是很有必要的。
So, it is necessary to study highly efficient and highly accurate algorithms for non-linear systems.
这些算法都存在不同程度地通过牺牲计算效率换取数值稳定性的不足。
These algorithms all exist weakness in some certain degree that of low computational efficiency.
BM算法可以实现更高效率的模式匹配。
实验结果表明该算法在聚类效率和性能上优于传统算法。
The experiment proves that this algorithm can get much better performance than traditional algorithms.
最后使用局部信息建立面邻居信息,很好的解决了这个问题,并提高了算法的效率。
Last, use local information to build face neighbor, perfectly solve the problem and promote efficiency.
算法具有较高的效率和广泛的应用价值。
对同一组数据的求解,第三种遗传退火算法优化效率更高。
To solve the same group data, the third method (Genetic-Simulated Annealing) is more efficiency.
此外还给出了一个高效率的关键字纠错算法。
In addition, an efficient algorithm for keyword correction is given.
在组卷上,没有提供高效率的智能组卷算法。
In the paper, did not provide efficient intelligent algorithm.
数值实验表明了这两种算法的效率高于已有的算法。
Numerical experiment show the two algorithm offers good performance.
数值实验表明了这两种算法的效率高于已有的算法。
Numerical experiment show the two algorithm offers good performance.
应用推荐