允许您捕获特定时间点的数据库状态。
Let you capture the state of a database at a specific point in time.
因此,消息点的数据无法从一个ME传输到另一个ME。
As a result, data of Message Points cannot be transferred from one ME to another.
适当地证实或反驳这一点的数据是没有用的。
Data that would aptly verify or refute this are not available.
也许这可以帮助你找到能令你清醒一点的数据灯柱。
Maybe that can help you approach the data lamppost with a bit more sobriety.
即使我们的数据集成工作极其简单,该方法也可以做到这一点。
And it did this even though our data integration work was extremely simple.
查找数据内的引用点。
缺乏数据私密性保护也是一些人的痛点。
The lack of data privacy safeguards is also a sore point for some.
最后但也是最重要的一点,制造企业已经陷入了数据的泥潭。
Last, but not least. Manufacturing companies are swamped in the data.
对数据中心和网络柜(net workcloset)进行清理是一个不错的着手点。
Getting a walkthrough of the data center and network closets is a good start.
在下午1点,连接数据库服务器并取得表数据的基线。
At 1:00 p.m. connect to the database and take a baseline of table data.
只检索需要的数据是做到这一点的方式之一。
有好的数据,并不意味着你总要据此做点什么决策。
Having good data does not mean you always need to act on it.
在数据库环境中,这一点是特别重要的。
这个时间段确定了您的灾难数据中心的恢复点目标(RPO)。
It is this period that determines the recovery point (RPO) of your disaster data center.
它拥有一个确认点,预期的文本,以及实际的数据。
It has a verification point name, expected text, and actual text.
开始时可能会感觉到一点不舒服,因为数据是真实的!
It can feel a little uncomfortable initially, because the data is real!
他的另一个关注点是数据分析。
这些都只是数据教给我们的一点点课程。
These are just a few of the lessons the datasets are teaching us.
故事点可能对所捕获数据的用途只字未提。
The story may not say anything about the use of the captured data.
它们还支持以点分隔的表示法,以深入到数据结构中的值之内。
They also support a dotted notation to drill into values in a data structure.
首先一点就是,许多国家对寿命等关键因素的数据统计很薄弱。
For one, many countries have poor data on crucial factors such as life expectancy.
为了做到这一点,就不得不放弃对数据的密封。
To do that, you've got to give up the idea of sealing in data.
而这一点对于某些数据而言会是一个很严重的问题。
数据访问对象模式的目的是提供到特定数据源的单个联系点。
The goal of the data Access Object pattern is to provide a single point of contact to a particular data source.
我想要更仔细一点,这真是极好的数据。
I want to go a little bit more carefully because this is really terrific data.
要实现这一点,可以在数据库名称的开头附上as _at。
To do this, we prepend as_ at the beginning of the database name.
然而不幸的是,通常放入到flash中的数据则一点也不灵活。
Unfortunately, the data that is typically put into the flash is not clever at all.
我们实际上有更多的消费者,在我们点云数据比他们拥有的他们。
We actually have more consumers in our data cloud than they have in theirs.
要做到这一点人们需要了解的数据列。
要做到这一点人们需要了解的数据列。
应用推荐