这就是我们要解的方程组。
它所能做的就是解决这些方程组问题。
我能够得到,我能够解决任意右侧部分b的这些方程组么?
Could I get, can I solve all these equations for every right hand side?
实际上,是讲Maxwell方程组。
And, in fact, something that is known as Maxwell's equations.
经济模型经常导致对方程组的研究。
Economic models often lead to the study of systems of equations.
本文研究的主要内容有:1、状态方程组的建立。
The main content is as follows:1. The establishment of the state equations .
这种方法还能用来求解更多的非线性数学物理方程或方程组。
The method can also be applied to solve more nonlinear mathematical physics equation or equations.
研究光子晶体的一般方程是麦克斯韦方程组。
The general equation of photonic crystal is Maxwell equation Groups.
该方程组有精确解,得到了流线方程。
The equation set has exact solutions and obtained the streamline equation.
引入最少故障原理可以对亚定的故障方程组求解。
The least fault principle may be employed to solve the underdetermined equations.
最后本文给出了计算冻结壁厚度的方程组。
Finally, a group of equations for calculating the thickness of the frozen wall is given.
从而可建立热量运动的守恒方程组。
As a result conservation equations for motion of heat can be established.
根据最小二乘法的求解原理,建立了一种适用于多变量方程组系数参数的拟合算法。
Multivariable equation set fitting method is derived on the basis of least square method principle.
解方程组是工程研究中的基本问题。
Resolving equation group is a principal problem in engineering study.
线性方程组与信号流图可以相互变换。
The linear equation system can be converted to a signal flow graph.
本文推导建立了太阳帆结构分析的理论方程组;
The theoretical equation system of structural analysis on solar sail is given in this paper.
共轭爆轰模型方程组封闭且有唯一解。
The equations group of conjugate detonation model is close and has unique solution.
该方法优点是计算简单,只需要解一些二次方程组。
The method is simple for computation, and it only needs to solve some equations.
推导了浅水方程组的极限形式。
所得的控制方程组用SIMPLE方法求解。
因此,研究非线性方程组的具有高效率高精度的算法是很有必要的。
So, it is necessary to study highly efficient and highly accurate algorithms for non-linear systems.
并给出方程组的形式解解空间构造和求解方法。
The construction of solution space was given and the solution approach was offered.
本文将分步有限元的计算方法引入到浅水方程组的求解中。
A fractional step finite element method is introduced to solve the shallow water flows.
证明了方程组解的存在性和唯一性。
We prove the existence and uniqueness of the solution of the system.
本文讨论非线性弹性动力学方程组的外问题。
In this paper, we deal with the exterior problem for the nonlinear elastodynamic system.
利用这个结果还求出了该方程组的初值一初值问题的精确解。
Moreover, the exact solution of a corresponding problem with initial boundary conditions is also given.
通过分析发现,预应力设计的结果实际上就是一个齐次线性方程组的解空间。
The result of the prestress design is actually the solution space of a homo...
通过分析发现,预应力设计的结果实际上就是一个齐次线性方程组的解空间。
The result of the prestress design is actually the solution space of a homo...
应用推荐