本文研究了中立型差分方程。
在变分方程中,只存在线积分,没有面积分。
方法差分方程理论。
本文由费马原理的变分形式,导出光线微分方程。
Ray equation is derived from Fermat's principle in variation form.
提出了采用反馈控制方法求解隐式差分方程的方法。
Feedback control method is used to solve implicit difference equation in this paper.
结论该非线性差分方程模型具有良好的可靠性和稳定性。
CONCLUSION Model of nonlinear difference equation has the advantage of reliability and stability.
为了获得该椭圆边值问题的解,推导出了有限元求解变分方程。
The corresponding variation equation has also been derived to solve this problem.
该模型的数学形式是一个非线性二阶常微分方程,利用有限差分方法进行求解。
The mathematical expression of this model is a second order non linear ordinary difference equation.
页岩气是这个方程式的一部分。
第二部分写的是,抛物方程的能控性。
The second part is the controllability of parabolic equation .
采用有限差分方法,对波动方程求数值解。
We use finite difference method to solve electromagnetic wave equation.
用严格的分波法求解方程并进行计算。
函数方程是十分有趣的课题,其解法也是很具有启发性的。
Function equation is a very interesting subject and its solution is very revelatory.
给出二分法求解频率方程的流程图,并进行实例计算。
The numerical solution of the frequency equation by half - separation method, was studied.
数值结果表明,AMG_CG法对求解三维弹性问题有限元方程是十分有效和健壮的。
Numerical results have shown that this AMG_CG method is very efficient and robust.
对于常见自由项类型的方程十分简便。
It is very convenient to solve the free-term equations of this kind.
用该方程求解的部分纯金属的过冷度同已知的金属凝固过冷度十分接近。
The under-cooling data of some metals calculated by the equation are very close …
用该方程求解的部分纯金属的过冷度同已知的金属凝固过冷度十分接近。
The under-cooling data of some metals calculated by the equation are very close …
应用推荐