And what I am going to do is say start with this ion, add up the energy associated with the interactions between that ion and everybody else in the row and then multiply it by Avogadro's number, because that is the number of atoms there are in a row.
接下来我要从这一离子开始,加上相互作用的能量,也就是这一离子,和其它所有在这一行的离子之间的能量,再乘以阿伏加德罗常数,因为这是在一行的原子的数量。
It only cares what temperature is. If temperature is constant, there's no change in energy.
如果温度是常数,能量就没有变化,对理想气体。
So now we have that energy is equal to the negative of the Rydberg constant divided by n squared.
我们可以把能量方程大大简化,现在能量等于负的Rydberg常数除以n平方。
So, if we start instead with talking about the energy levels, we can relate these to frequency, because we already said that frequency is related to, or it's equal to the initial energy level here minus the final energy level there over Planck's constant to get us to frequency.
如果我们从讨论能级开始,我们可以联系到频率上,因为我们说过频率和能量相关,或者说等于初始能量,减去末态能量除以普朗克常数。
We can also figure out the energy of this orbital here, and the energy is equal to the Rydberg constant.
我们同样可以知道,这个轨道的能量,它等于,Rydberg常数。
And I use the term photon here, and that's because he also concluded that light must be made up of these energy packets, and each packet has that h, that Planck's constant's worth of energy in it, so that's why you have to multiply Planck's constant times the frequency.
我这里用光子这个词,是因为他还总结出光,必须由这些能量包组成,每个能量,包有这个h,普朗克常数代表,里面的能量,所以这就是为什么你们,要用普朗克常数乘以频率。
应用推荐