If this were to be an absolute zero Kelvin, then we could we can have something, T2 Sorry, it's T2.
如果它等于绝对零度,我们可以,对不起,这是。
And the temperature scale that turns out to be well-defined and ends up giving us the concept of an absolute zero is the ideal gas thermometer.
比如理想气体温标,它有精确的定义,并能引出绝对零度的概念,今天我们就先来谈谈它。
If I had taken as my interpolation scheme, my white curve here, I could go to infinity and have the equivalent of absolute zero being at infinity, minus infinity.
要注意,如果我们采用,像图中白线这样的插值方案的话,我就可以一直降温下去,相应的绝对零度点。
We looked at pressure change before, actually, in discussing the third law, the fact that the entropy goes to zero as the absolute temperature goes to zero for a pure,perfect crystal.
在讨论热力学第三定律的时候,我们讨论过压强变化,即对于纯净的完美晶体,随着温度下降到绝对零度熵也变成零。
So, this temperature, this absolute zero here, which is absolute zero on the Kelvin scale.
在负无穷处,现在把绝对零度定义为,开尔文温标中的0度。
The lowest possible temperature in the Celsius scale is minus 273.15 degrees Celsius. So that begs the notion of re-referencing our reference point, of changing our reference points.
在摄氏温标中,绝对零度是-273。15摄氏度5,这样,我们需要重新定义参考点,将零度的参考点取在绝对零度处,而不是0摄氏度处。
Guess what the third law is going to tell us?
它说绝对零度不可达到?
The triple point of water is going to be defined as 273.16 degrees Kelvin.
现在的参考点是0K:,绝对零度。
Last time we reach the third law which is telling us that we can't quite get to zero degrees Kelvin .but that as the temperature approaches zero degrees Kelvin, the absolute entropy of a pure substance in perfect crystalline form is zero.
上次课我们得到了热力学第三定律,这个定律告诉我们我们无法,达到0K的温度,但是在我们接近绝对零度的过程中,以完美晶体形式存在的纯物质的绝对熵,也趋向于零。
应用推荐