• Linear algorithms tend to be things where, at one pass-through, you reduce the problem by a constant amount by one. If you reduce it by two, 1 it's going to be the same thing.

    有问题么?,线性复杂度的算法,当进行了一个,常量级步数的操作的时候,将问题的规模缩小了一个。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • I make the problem ten times bigger, it takes one more step to do it.

    而在线性复杂度的算法里,我把规模扩大十倍。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • Right? You can see that this ought to be linear, because what am I doing?

    这个算法应该是线性复杂度的,因为这个算法是怎么执行的呢?

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • It is certainly possible, for example, that a quadratic algorithm could run faster than a linear algorithm. It depends on what the input is, it depends on, you know, what the particular cases are. So it is not the case that, on every input, a linear algorithm is always going to be better than a quadratic algorithm.

    一个二次平方级复杂度的算法,当然也是可能跑的比线性复杂度算法快的,这取决于,你知道的,输入以及特定的案例,因此并不是对于每个输入,线性复杂度就一定会,比二次平方级复杂度的算法的表现要好,只是通常来说是这样的。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • If you blink, you miss it.

    如果问题的复杂度线性的。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • Now this happens to be what we would call a linear process, because the number of times I go around the loop is directly related to the size of the argument. If I double 2 the argument, I'm going to double the number of times I go around the loop. If I increase it by five, 5 I'm going to increase by five the number of times I go around the loop.

    这恰好是我们会成为,线性复杂度程序的一个例子,因为我要执行循环的次数是,和输入的参数的大小直接相关的,如果我将这个参数乘以,那么我就要将进行循环的次数也乘以2了,如果我把参数加上,那么循环的次数也要加上5了。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • I've got to count my way down, which means that the access would be linear in the length of the list to find the i'th element of the list, and that's going to increase the complexity.

    的位置并去访问,然后继续下去,也就意味着,找到数组中的第i个元素的方法,是关于数组的长度呈线性复杂度的,这回增加算法的复杂度

    麻省理工公开课 - 计算机科学及编程导论课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定