And I am going to superscript it molecular orbital, and this upper one, to indicate that it's antibonding, has the asterisk.
我将给分子轨道加上标,这个上标,表示反键轨道,有一个星号。
It turns out that the antibonding orbital is a little bit higher from the atomic orbital level than the bonding orbital is lower.
这证明了,反键轨道,比原子轨道高,成键轨道比原子轨道第。
So, we'll start today talking about the two kinds of molecular orbitals, we can talk about bonding or anti-bonding orbitals.
今天我们先来,讨论两种分子轨道,我们要讨论成键和反键轨道。
You can certainly hit Enter but as we saw-- seen that very quickly makes a mess of your code and such and so backslash N is new line.
你也可以敲回车键-,但是会让你的代码看起来乱七八糟,反斜杠n就是换行符。
And because of the way those antibonding orbitals are stacked, the two electrons go one each into those antibonding.
因为这样,反键轨道被堆积了,这两个电子都填到各自的反键轨道。
All right, so the bonding order, you're correct, should be 2, if we subtract the number of bonding minus anti-bonding electrons and take that in 1/2.
好,你们是对的,键序为,如果我们用成键数,减去反键数除以2。
so you can see that there is going to be two sets in antibonding, three sets in bonding for a net of one, giving us the single bond.
因此你能看到,反键轨道上有两组,三组成键,得到一组净成键,所以成的是单键。
The way that we can figure this out is using something called bond order, and bond order is equal to 1/2 times the number of bonding electrons, minus the number of anti-bonding electrons.
我们可以用叫做,键序的概念来弄明白它,键序等于1/2乘以成键电子,数目减去反键电子数目。
And this one, just for completeness, is what the antibonding orbital would look like.
然而这个,只是为了其完全性,把反键轨道也表示出来。
So specifically, what we do associate them instead is within molecular orbitals, and what we say is that they can be either in bonding or anti-bonding orbitals.
特别的,我们把它们和,分子轨道相联系起来,我们说它们可以成为,成键轨道或者反键轨道。
So if we name this orbital, this is an anti-bonding molecular orbital So we had bonding and now we're talking about anti-bonding.
这是反键分子轨道,我们有了成键,现在我们讨论反键。
So for the bond order we want to take 1/2 of the total number of bonding electrons, so that's going to be 4 minus anti-bonding is 4, so we end up getting a bond order that's equal to 0.
键序等于1/2乘以,总的成键电子数,也就是4,减去反键电子数,也就是4。,所以最后得到键序为0。
Here is the antibonding and here is the bonding.
这是反键轨道,这是成键轨道。
And then this means we'll have a total of sigma1s two electrons in our hydrogen molecule, so we can fill both of those into the sigma 1 s orbital, the bonding orbital. We don't have to put anything into the anti-bonding orbital, so that's great.
我们可以把这两个,都填入,轨道里去,成键轨道,我们不需要把什么放到反键轨道里去,这很好。
And then the antibonding which we don't care about.
然后他们的反键轨道我们不去管了。
s plus 1s gives you this oval ellipsoid which is the bonding, and here are the antibonding, and then these are the energy levels that I have been drawing for you.
s和1s上两个电子组成的键合电子成椭圆形,这是成键,这是反键电子,这些是刚刚已经画过的能级,我也给你们画了。
So we'll start to look at molecules and we'll see if we take two atoms and we fill in our molecular orbital and it turns out that they have more anti-bonding orbitals than bonding, that's -- a diatomic molecule we'll never see.
我们要看开始看一看分子,并且我们会发现如果我们,取两个原子并且填入分子轨道,结果是它们的反键轨道,比成键轨道更多,这就是-一个我们不会看到的二元子分子。
We can also talk about anti-bonding orbitals where we have destructive interference.
我们也可以讨论,相消干涉的反键轨道。
PROFESSOR: All right, what about anti-bonding?
嗯,那反键呢?
So it's an Anti-bonding orbital.
这是一个反键轨道。
So it helps us predict, will we see this, for example, h 2, which we're going to be about to do, we'll see is stabilized because it has more bonding than anti-bonding.
这帮助我们预测,我们等会会看到,比如H2O,我们等会要讲到,我们会看到它更稳定是,因为成键比反键更多。
So we would label our anti-bonding orbital higher in energy than our 1 s atomic orbitals.
我们应该把反键轨道标在,高于1s原子轨道能量的地方。
And what we see here is now when we're combining the p, we have our 2 p x and our 2 p y orbitals that are lower in energy, and then our pi anti-bonding orbitals that are higher in energy.
这里我们看到,当我们结合p轨道时,在低能处我们有,2px和2py轨道,π反键轨道在更高的能级处。
So you can see that this is non-bonding, this is even worse than non-bonding, it's anti-bonding, because we're actually getting rid of electron density between the two nuclei.
所以你可以看到这是不成键的,它甚至比不成键还糟糕,它是反键,因为我们实际上是去掉了,两个原子核之间的电子。
And the other thing to point out is that the energy that an anti-bonding orbital is raised by, is the same amount as a bonding orbital is lowered by.
另外一个要指出的事情是,反键轨道引起的能量升高,和成键轨道引起的能量降低是相同的。
So again, this is an anti-bonding orbital, and what you see is that there is now less electron density between the two nuclei than there was when you had non-bonding.
同样的,这是反键轨道,你们看到当你有反键轨道的时候,两个原子核中间的电子密度更小了。
You might have thought before we started talking about molecular orbital theory that non-bonding was the opposite of bonding, it's not, anti-bonding is the opposite of bonding, and anti-bonding is not non-bonding.
你也许在我们讨论分子轨道之前,就想过非成键时成键的反面,它不是,反键才是成键的反面,反键不是非成键。
And this one here, because it is at a higher energy is called antibonding molecular orbital.
这里的这个,因为处在一个较高的能级,被叫做反键分子轨道能级。
So we know that it's 1, because we have 1, 2, 3, 4 bonding, minus 2 anti-bonding, and 1/2 of that is a bond order of 1.
我们知道它是,因为我们有1,2,3,4个成键,减去2个反键,它的一半就是键序为1。
So any time I draw these molecular orbitals, I do my best, and I'm not always perfect, yet trying to make this energy different exactly the same for the anti-bonding orbital being raised, versus the bonding orbital being lowered.
所以我在画这些分子轨道的时候,虽然不是很完美,但我总是尽量,让反键轨道引起的,能量升高和成键轨道。
应用推荐