It can be x plus some change in x plus j times y plus a change in y.
可以写成 x 加上 x 方向的变化量,再加上 y 加上 y 方向的变化量
Initially, its location as a function of time is equal to i times x plus j times y.
初始时刻,它的位移作为时间的函数等于,i ? x + j ? y
We can write out what it is for any certain atom or ion x, X so it's just x plus an electron gives us x minus.
我们可以用,X,来表示一个任意的原子或离子,因此可以写成,X,加一个电子等于负一价的。
> Right. So to do X plus, plus.
>,对的,就是做X自增。
The power of linearity is F=k1+k2 if I come across f of x, y, z equals k1 plus k2, if it is a linear equation, I don't have to go and solve it all over again.
线性的威力是,一个方程,如果它是个线性方程,那么我就不用再去解他了。
Remember, we don't do a one-to-one correlation, because p x and p y are some linear combination of the m plus 1 and m minus 1 orbital.
记住,我们不需要把它们一一对应,因为px和py轨道是,m等于正负1轨道的线性组合。
It's still 1, because you plus plussed the wrong symbol called X. So for now, take-away from this, don't do this.
它还是1,因为你自增的是那个错误的叫做X的符号,现在,拿走这个,不这样做。
x = 0 plus-- What's the horizontal velocity?
= 0 加上,水平方向的速度是多少
So we can have, if we have the final quantum number m equal plus 1 or minus 1, we're dealing with a p x or a p y orbital.
所以如果我们有,磁量子数m等于正负1,我们讨论的就是px或者py轨道。
And the mathematics of that equation involved a double derivative in time of x 0 plus some constant times x equals zero with some constraints on it.
那个数学方程式,包括了x对时间的二阶导数,加上常数乘以x等于,还有一些限制条件。
We know it's going around in a circle because if I find the length of this vector, which is the x-square part, plus the y-square part, I just get r square at all times, because sine square plus cosine square is one.
我们之所以知道它做圆周运动,是因为我求出了这个矢量的模长,也就是 x 的平方加上 y 的平方,我就得到了它在任意时刻的模长平方,因为正弦平方加余弦平方始终等于1
应用推荐