And we can do the same thing with, well, we're going to do it with nitrogen in a minute, but this is a case where we have two atoms sharing electrons.
然后同样的,我们也可以很快的对氮气进行类似的处理,但是这是共用电子,的双原子例子。
It doesn't go all the way to absolutely 100 percent ammoniazero hydrogen zero nitrogen if they were mixed together with the right ratios.
即使按适当比例混合,也不会出现全部氨气,没有氢气和氮气的情况。
So in terms of nitrogen that starts off with a valence number of 5, again we have 2 lone pair electrons in the nitrogen, and again, we have 6 electrons that are shared.
对于氮来说,我们应该从五个价电子开始,同样,氮也有两个孤对电子,共用电子的个数也一样,是六个。
Let's add them. Nitrogen we start with 2s2, 2p3.
一个个加,氮气以2s2,2p3开始。
- Then also, nitrogen, 3 minus -- these are all going to be isoelectronic with neon.
然后还有,氮,负三价-,这些都是与氖原子等电子的。
So in our first structure, we would find for the nitrogen we have a formal charge 5 minus 4 minus 2, because we're starting with 5 valence electrons, so that is a formal charge of minus 1.
那么在我们的第一个结构中,我们发现氮的形式电荷量是五减去四4,再减去二,因为我们开始有五个价电子,因此它的形式电荷量是负一。
If we look at our last structure here where we have nitrogen the middle, we can also figure out all those formal charges, and in this case we have plus 1 on the nitrogen, we have minus 2 on the carbon, and then we end up with a 0 on the sulfur there.
如果我们来看看最后一个结构,在中间的原子是氮,我们同样可以计算出所有的形式电荷,而在这种情况下,氮为正一,碳为负二,而最后硫为零。
You take your room temperature liquid helium and you cool it with liquid nitrogen to 77 degrees Kelvin, the new, you're not quite there yet 77k unfortunately right? Then you take hydrogen you cool it would liquid nitrogen to 77, then you can use your hydrogen gas.
首先要有常温的氦气,拿液氮把它冷却到77k,那个新来的7,你不坐在那儿,对吧?,然后用液氮把氢气降温到,然后就可以使用这个氢气了,想要用氢气来做焦耳-汤姆孙实验。
应用推荐