It has to be a bigger distance, a broader abyss, and that's what Iser is working with in the passages I'm about to quote.
它必须是一个更大的距离,更宽的深渊,这就是伊瑟尔在我想引用的那些话里面所试图说明的。
And we can also talk about the bond length, so we might be interested in what the bond length is, what the distance between these two nuclei are.
另外一点就是键长,我们对键的长度也感兴趣,也就是两个原子核之间的距离。
And, coincidently, what is the partial of energy with respect to distance?
巧合的是,能量对距离的导数是什么?
Let's ask, what's the range? Range is that distance.
那么射程是多少,射程就是这个距离
Here, what's different between autocrine and paracrine is that there's some distance between the cell that produces the signal and the cell that receives the signal, but it's not too great a distance because the blood system doesn't have to be involved.
自分泌和旁分泌的区别在于,旁分泌中,产生信号的细胞和接收信号的细胞,之间存在着一定的距离,但这个距离并不远,因为血液系统并不参与
And what is discussed is that for a 1 s hydrogen atom, that falls at an a nought distance away from the nucleus.
我们讨论了对于氢原子1s轨道,它的最可能半径在距离原子核a0处。
So, basically what we're saying is if we take any shell that's at some distance away from the nucleus, we can think about what the probability is of finding an electron at that radius, and that's the definition we gave to the radial probability distribution.
本质上我们说的就是,如果我们在距离原子核,某处取一个壳层,我们可以考虑在这个半径处,发现电子的概率,这就是我们给出的,径向概率密度的定义。
So, if we look at this graph where what we're charting is the internuclear distance, so the distance between these two hydrogen atoms, as a function of energy, -- what we are going to see is a curve that looks like this -- this is the general curve that you'll see for any covalent bond, and we'll explain where that comes from in a minute.
因此,如果我们来看一看这幅曲线图,这里我们画的横坐标是核间距,也就是这两个氢原子之间的距离,纵坐标是能量,我们看到的这是能量关于核间距的曲线-,这是一条普遍的曲线,在研究任何共价键时你都会遇到,我们马上就会解释一下它是怎么来的。
So, we can use Coulomb's force law to think and it does that, it tells us the force is a function of that distance. But what it does not tell us, which if we're trying to describe an atom we really want to know, is what happens to the distance as time passes?
来考虑这两个粒子之间的,它告诉我们力随距离的函数关系,但它不能告诉我们,而我们如果要描述,原子又非常想知道的是,距离随时间的变化时怎样的?
r And what that is the probability of finding an electron in some shell where we define the thickness as d r, some distance, r, from the nucleus.
在某个位置为,厚度为dr的壳层内,找到原子,的概率,我们来考虑下我们这里所说的。
that's one way to think about it, and there's also another way, and this is the way that your book presents it. If you, in fact, have two of the same atom right next to each other, let's say you have a crystal, or let's say you're talking about a metal, what you can do is just look at the distance between the two nuclei, and split that in 1/2, and take the atomic radius that way.
这只是一种定义的思路,另外还有其它方法,也就是你们课本上的方法,如果你,事实上,有两个相同的原子彼此靠在一起,比如说你有一个晶体,或者说你讨论的是一个金属,你所要做的就是,看看这两个原子核之间的距离,然后将距离除以二,就得到了这个原子的半径。
应用推荐