So even though we see a nodal plane down the center, I just want to really point out that it's only when we have a nodal plane in the internuclear or the bond axis that we're calling that a pi orbital.
虽然在中间有个节面,我想要指出的是,只有节面在核间轴,或者键轴上时,我们才叫它π轨道。
If we're talking about a single bond, we're talking about 2 orbitals overlapping in the internuclear axis.
如果我们讨论的是单键,我们讨论的是两个轨道,在核间轴中重叠。
And a sigma bond forms any time you have two orbitals coming together and interacting on that internuclear axis.
当你把两个轨道合在一起,并在核间轴上有相互作用时,就形成了sigma键。
Any time two orbitals come straight on together in that internuclear axis, you're going to have a sigma bond.
任何时候两个轨道,在核间轴上直接到一起,你就能得到sigma键。
Sometimes it's also called the internuclear axis.
有时候它也叫核间轴。
And remember for this class, we always define z as the internuclear or the bond axis.
记住在我们的课堂上,我们总是把z方向定义为核间轴的方向。
A triple bond, again is going to have one sigma bond on the internuclear axis.
一个三键,同样的也有沿着核间轴sigma键。
The reason that it's a sigma bond is sp3 because the s p 3 hybrid orbital is directly interacting with the 1 s orbital of the hydrogen atom, and that's going to happen on the internuclear axis, they're just coming together.
它是sigma键的原因,是因为,杂化轨道直接和氢原子1s轨道相互作用,它们作用发生在核间轴上,它们会到一起。
All right, so what we see here is we have our sigma bond that's along the internuclear axis here, but we also have a pi bond, because each of these atoms now has electrons in it's in a p orbital, so we're going to overlap of electron density above and below the bond.
这里我们看到sigma键,是沿着核间轴的,但我们还有一个π键,因为每个原子的p轨道上,都有电子,所以电子密度在键的上面,和下面都有电子密度交叠。
Specifically, it's always the z that forms the sigma orbital, and the reason is at least at a minimum for this class we always define the internuclear axis as the z axis, so this is always the z axis, so it's always going to be the 2 p z's that are coming together head-on.
特别的,z总是形成sigma轨道,这是因为至少在这个课里面,我们总是定义核间轴为z轴,所以这总是z轴,所以2pz轨道总是,朝一个方向出现。
应用推荐