• That's why we said on the personality theory,as we went ahead in time, once the P-functioning stops,I don't exist anymore.

    这就是为什么根据人格理论的说法,随着时间流逝,人格功能停止,我也不再存在。

    耶鲁公开课 - 死亡课程节选

  • Well, the initially tempting thing to say is not only aren't you broken, but you're actually engaged in P-functioning.

    首先要说的会是,不仅你没有被破坏,还有确实,拥有人格功能性。

    耶鲁公开课 - 死亡课程节选

  • G P Thompson And it turns out that G.P. Thompson, and I'm sure this wasn't the case, but I like to think of it as a little bit of child rebelling against the father.

    结果是他的儿子,我确定不是那种情况,但是我们认为他在小时候,对他的父亲可能有一点叛逆。

    麻省理工公开课 - 化学原理课程节选

  • It's true for any gas, and if I remove this limit here, r t is equal to p v bar, I'm going to call that an ideal gas.

    这样的气体被称作理想气体,这就是理想气体的性质,理想气体的涵义是什么?

    麻省理工公开课 - 热力学与动力学课程节选

  • That's different when you have continuous values-- you don't have P because it's always zero.

    和离散型随机变量的分布不同的是,连续型随机变量的分布中,某一点的概率值始终是零

    耶鲁公开课 - 金融市场课程节选

  • Texts that insist on a central sanctuary are probably Josiah's time or later. And there are many sections of P that don't seem to assume a central sanctuary.

    一些章节坚持中心圣所,则可能在约西亚或之后时期,P资源中有很多部分,并没有呈现出一个中心圣所。

    耶鲁公开课 - 旧约导论课程节选

  • But if death means permanent cessation of P-functioning, then it turns out the dead weren't really dead after all.

    但如果死亡指的是人格功能性的永久停止,那就说明死者并非死去。

    耶鲁公开课 - 死亡课程节选

  • They don't care that there are other atoms and molecules around. So that's basically what you do when you take p goes to zero.

    这正是当压强无限小时,气体的行为,气体的体积无限大。

    麻省理工公开课 - 热力学与动力学课程节选

  • So instead of v bar, we write p v bar minus b, equal r t.

    现在考虑,这些气体分子之间。

    麻省理工公开课 - 热力学与动力学课程节选

  • V So this nR over V. And then, using the relation again, T we can just write this as p over T.

    恒定温度下的dp/dT等于nR除以,再次利用状态方程,可以把它写成p除以。

    麻省理工公开课 - 热力学与动力学课程节选

  • p Well, it's not just p dS/dV because there's some dS/dV at constant T.

    它不是简单的,因为式子中还包含,恒定温度下的。

    麻省理工公开课 - 热力学与动力学课程节选

  • T p V I've got three variables, T, p and V.

    一共有三个变量:

    麻省理工公开课 - 热力学与动力学课程节选

  • It can't just be a matter of not P-functioning.

    肯定不止和人格功能性有关。

    耶鲁公开课 - 死亡课程节选

  • TdS It comes from the fact that dq reversible is T dS, pdV and dw reversible is minus p dV.

    这个结论来自于:可逆过程下dq等于,做功dw等负的。

    麻省理工公开课 - 热力学与动力学课程节选

  • In this case, V = /P. Have two quantities and the number of moles gives you another property. You don't need to know the volume. All you need to know is the pressure and temperature and the number of moles to get the volume.

    以及气体的摩尔数,就可以得到第三个量,知道压强,温度和气体的,摩尔数就可以推导出气体的体积,这称为状态方程,它建立了状态函数之间的联系。

    麻省理工公开课 - 热力学与动力学课程节选

  • pV=RT p plus a over v bar squared times v bar minus b equals r t. All right if you take a equal to zero, these are the two parameters, a and b. If you take those two equal to zero you have p v is equal to r t.

    我们就回到,也就是理想气体,状态方程,下面我们来看看,这个方程。

    麻省理工公开课 - 热力学与动力学课程节选

  • V So it's minus T dV/dT at constant p, plus V.

    负的T乘以恒定压强下dV/dT,再加上。

    麻省理工公开课 - 热力学与动力学课程节选

  • We want a relationship in p-V space, not in T-V space. So we're going to have to do something about that. But first, it turns out that now we have this R over Cv.

    我们想要p-V空间中的结果,而不是T-V空间中的,因此需要做一些变换,先来看现在的关系,它跟R/Cv有关。

    麻省理工公开课 - 热力学与动力学课程节选

  • That's it. Again, these other p dxy dyz - or the d x y, d y z, those are going to be those more complicated linear combinations, you don't need to worry about them.

    同样,这些p轨道,或者,它们是一些,很复杂的线性组合,你们,不用管它。

    麻省理工公开课 - 化学原理课程节选

  • And so they defined them, p after many experiments, the limit of this 0 delta T delta p and the limit of delta p goes to zero as the Joule-Thomson coefficient.

    他们定义了这些量,以及它们的范围,ΔT比Δ,Δp的极限趋近于,叫做焦耳-汤姆逊系数。

    麻省理工公开课 - 热力学与动力学课程节选

  • And the useful outcome of all that is that p we get to see how entropy changes with one of those variables in terms of only V, T, and p, which come out of some equation of state.

    这样做的重要结果是,我们得到了熵随着V,T或者,其中一个变量变化的情况,这些可以从状态方程得到。

    麻省理工公开课 - 热力学与动力学课程节选

  • And again, you might be thinking well, why didn't we actually hybridize this 2 p y orbital.

    它来自1s和2p轨道,所以它是sp2,同样。

    麻省理工公开课 - 化学原理课程节选

  • du/dV So now our du/dV, dp/dT at constant T is just T times dp/dT which is just p over T minus p, it's zero.

    现在我们的恒定温度下的,等于T乘以dp/dT,在这里,等于p除以T,最后再减去p,结果是0。

    麻省理工公开课 - 热力学与动力学课程节选

  • So that's true for a hydrogen atom, it doesn't matter if you're in a p or an s orbital, their energies are the same.

    这对于氢原子来说是这样的,不论是p或,者s轨道,能量是一样的。

    麻省理工公开课 - 化学原理课程节选

  • And this shows that G is written naturally as a function of T and p.

    这表明G可以很自然的,写成Tp的函数。

    麻省理工公开课 - 热力学与动力学课程节选

  • Adiabatic q equal to zero. It's also delta H 0 which is zero. The two didn't necessarily follow because remember, delta H is dq so p is only true for a reversible constant pressure process.

    在这个过程中ΔH等于,绝热的所以q等于0,而ΔH也等于,这两个也不一定有因果关系,因为,记住,ΔH等于dq只有在恒压。

    麻省理工公开课 - 热力学与动力学课程节选

  • Keep in mind we do have this p orbital here and it's coming right out at us. And this p orbital is here, but it's empty, it doesn't have any electrons in it, that's why we don't have to worry about it in terms of getting our electrons as far away from each other as possible.

    他们程120度角互相远离,这样它们离得最远,记住我们这里确实有个p轨道,它朝向我们,这里有个p轨道,但它是空的,里面没有电子,这就是为什么我们在考虑。

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定