You'll also know that all of these binding energies here are negative, so the negative sign indicates that it's low.
你们将会知道所有的这些,结合能都是负的。
So now we can just take the negative of that binding energy here, and I've just rounded up here or 1 . 4 times 10 to the negative 19 joules.
等于4是第三激发态,现在我们可以取它结合能的负值,也就是1。4乘以10的负19次方。
In fact, he goes so far as to say that justice is the most sacred part and the most incomparably binding part of morality.
实际上,他甚至声称,公正,是道德中最神圣,和最不可或缺的部分。
Now remember that only appears in DNA and appears in RNA, and so can also form a hydrogen binding pair with .
还要记住T只出现在DNA中,而U出现在RNA中,U和A也可以通过氢键结合就可以了
So, for example, in a hydrogen atom, if you take the binding energy, the negative of that is going to be how much energy you have to put in to ionize the hydrogen atom.
例如在氢原子里面,如果你取一个结合能,它的负数就是。
And an important thing to note is in terms of what that physically means, so physically the binding energy is just the negative of the ionization energy.
一个需要注意的很重要的事情,是它的物理意义,从物理角度来说结合能,仅仅是电离能的负数。
So, what we can do is figure out what we would expect the binding energy of that electron to be in the case of this total shielding.
完全屏蔽的案例中,期望的电子结合,能再次记住,结合能物理上来说是。
So we know that we're in the n equals 5 state, so we can find what the binding energy is here.
我们知道,我们在n等于5的态,我们可以找到结合能是多少。
it's an easy calculation -- we're just taking the negative of the binding energy, again that makes sense, because it's this difference in energy here. So what we get is that the binding energy, when it's negative, the ionization energy is 5 . 4 5 times 10 to the negative 19 joules.
这个计算很简单-我们,只需要取结合能的负值,同样这很容易理解,因为这就是这的能量差,所以我们得到的就是结合能,当它取负值,电离能就是5。45乘以。
And we know that n describes the total energy, that total binding energy of the electron, so the total energy is going to be equal to potential energy plus kinetic energy.
我们知道,n是描述总能量的,电子总的结合能,所以总能量,等于,势能加动能。
So I said that this technique was used to experimentally determine what the different binding energies or the different ionization energies are for the different states in a multielectron atom.
我说过,这项技术被用来,在实验上确定多电子原子的,各个不同态相应的束缚能,或者电离能。
So you don't want to put in a negative energy, that's not going to help you out, you need to put in positive energy to get an electron out of the system. So that's why you'll find binding energies are always negative, and ionization energies are always going to be positive, or you could look at the equation and see it from there as well.
因为这对电离没有帮助,你需要一个正的能量,使得电子脱离这个系统,这就是为什么你会发现,结合能总是负的而电离能总是正的,或者你们看这个方程也可以发现这一点。
So essentially, we have two ethene or ethylene molecules here to start with where these blue are our 2 s p 2 hybrid orbitals, so you can see that for each carbon atom, one is already used up binding to another carbon atom.
本质上,我们从两个乙烯分子开始,蓝色的是2sp2杂化轨道,你可以看到,对于每一个碳原子,其中一个已经用来和另外一个碳原子成键。
We're going to get to more complicated atoms eventually where we're going to have more than one electron in it, but when we're talking about a single electron atom, we know that the binding energy is equal to the negative of the Rydberg constant over n squared, so it's only depends on n.
我们以后会讲到,更加复杂的情况,那时候,不只有一个原子,但当我们讲,单个原子的时候,我们知道结合能,等于,负的Rydberg常数,除以n平方,所以它仅仅由n决定的。
It gets produced in response to a signal so there's a binding of a ligand to a receptor, the enzyme that does this conversion is activated and more cycle AMP is released.
这类分子的产生是对信号做出的一种反应,当配体和受体结合时,催化这种转化过程的酶被激活,更多的cAMP释放出来
应用推荐