They got lost in the fear or pressure performing at this high level.
在恐惧和压力下,因赛事之高,而迷失。
In general, temperature and volume or pressure.
一般来说写成了温度,体积和压强的函数。
So this isn't the most useful form that we can have, but what we'll see shortly is that from this, we can then derive further criteria for essentially any set of variables or any set of external constraints, like constant temperature or pressure or volume and so forth that we might set.
所以这不是我们所能得到的最有用的形式,但是我们会很快看到,我们能够进一步推导出包含任意变量,或者任意约束的自发过程判断标准,比如说恒定的温度,压强,体积或者其他我们能够给出的约束。
That is, most processes that we're concerned with, they'll happen with something held constant like pressure or temperature or maybe volume.
这句话是说我们所关注的大部分过程,发生的时候都是保持某个量为常数,比如压强,温度或者体积。
For instance, the pressure and the temperature, or the volume and the pressure.
比如压强和温度,或体积和压强。
It's a state function, so we're at constant temperature and pressure, and now we want to consider some chemical change or a phase transition or you name it.
这就是态函数,我们处于恒定的温度和压强之下,然后考虑某些化学变化或者相变,或者你想考虑的东西。
But now, what happens if, instead we look at what happens when we go to some state one to some other state two and it's the pressure. Or the volume, that changes.
但是现在,我们看看如果,我们关系从状态一变化到状态二时,体积或者压强发生变化。
And our heat of reaction or enthalpy of reaction is defined as the enthalpy at constant pressure.
我们的反应热,或反映,的焓被定义为恒压,等温。
So the partial pressure or the pressure by which you have this triple point, happens to be 6.1 times 10 to the minus 3 bar.
而要小得多,事实上,水的三相点时的压强是6。1毫巴。
Then the second derivative gives the change in entropy with respect to the variable that we're differentiating, with respect to which is either pressure or volume.
二阶导数给出熵,随着变量变化的情况,这些变量包括压强或者体积。
T2 Is the temperature T2 in this process smaller or larger than if I were to do the process reversibly with the same endpoint pressure.
这里的末态温度,与经过可逆绝热过程,到达相同压强的末态温度相比哪个比较高呢?
It's going to take place in there. It's going to be a constant pressure, it might be open to the air, or even if it isn't, there might be plenty of room, and it's a liquid anyway, so the pressure isn't going to change significantly.
也许它是液体,它在这个位置,这是恒压的,它也许是连通大气的,就算不是,它也有,足够的空间,而它是液体,压强不会显著地改变。
OK, now we actually would like to simplify this or to write this in terms of not the volume change, v2/v1 but the pressure change. So, we have V2 over V1.
接下来我们将要把问题简化,不用体积变化来描述,而改作用压强变化来描述,现在我们有。
If I look at different points in my container during that path, I'm going to have to use a different value of pressure or different value of temperature That's not an equilibrium state, and that process turns out then to be an irreversible process.
如果我要研究在路径中容器里的,不同的点,我就得在容器里不同的点上使用,不同的压强值,或不同的温度值,实际上这不是个平衡态,这个过程是,不可逆过程。
But because in many cases we can reasonably either model or measure equations of state, collect data for a material for its temperature, pressure, volume relations, then in fact if we can relate all these quantities to those then in fact we really can calculate essentially all of the thermodynamics. For the material.
但是因为在很多情况下,我们能够合理的给出状态方程的模型,或者通过收集一个物质的,温度,压强和体积之间的关系,来测量其状态方程,所以实际上我们可以给出压强等物理量,和热力学势之间的关系,并计算出所有的热力学势,对于给定的物质。
应用推荐