We are expecting to see that it decreases because it's feeling a stronger pull, all the electrons are being pulled in closer to the nucleus, so that atomic size is going to get smaller.
我们将看到它是减小的,因为电子会感受到越来越强的吸引力,所有的电子将会被原子核拉得越来越近,所以原子半径将越来越小。
These are all isoelectronic, they all have the same electron configuration. And we can also think about going back to atomic size for a second.
这些都是等电子的,它们都有相同的电子排布,而,我们还可以再回想一下原子尺寸的概念。
Here's where it comes. " The result of the discussion of these questions seems to be a general acknowledgment of the inadequacy of classical electrodynamics in describing the behavior of systems of atomic size."
这就是他来的地方“,这些问题讨论的结果,似乎变成了一种普通的知识,经典电动力学,不能描述原子尺度的系统行为“
And if we're talking about atomic radius, essentially we're talking about atomic size.
如果我们在讨论原子半径,实际上我们讨论的是原子的尺寸。
But once we got to the atomic size scale, what happens is we need to be taking into account the fact that matter has these wave-like properties, and we'll learn more about that later, but essentially classical mechanics does not take that into account at all.
但一到到了原子尺度量级,我们必须考虑到物质,这时候有波动性质,关于这点我们今后将会学到更多,但本质上经典力学并,没有考虑这个性质。
So, then we'll get to turn to a new kind of mechanics or quantum mechanics, which will in fact be able to describe what's happening on this very, very small size scale -- so on the atomic size scale on the order of nanometers or angstroms, very small particles.
然后我们要讲到一种,新的力学--量子力学,它可以解释,发生在很小尺度,大约是原子尺寸大小,也就是纳米或埃的量级。
应用推荐