As you can see, it's nothing but a pattern of four bars plus four bars plus four bars plus four bars.
大家可以看到,它只不过是一种模式,若干段四个小节的叠加
And you can use mnemonics to try to keep these straight I see the T as sort of a plus sign.
你可以使用记忆术来记清它们,我将T看成是加号。
In the Basel I there were Tier I capital requirements and they defined Tier I capital as capital in a certain form -it's stockholders equity plus preferred stock.
第一次巴塞尔协议提出了一级资本要求,他们将一级资本定义为,一种特定形式的资本金,就是股东权益加上优先股
The claim is, I can write any vector you give me as a real scale i plus a real scale j.
也就是说,我可以把任何你给我的矢量,写成 i 和 j 的实系数线性组合的形式
sa So we have 1 s a, and we're drawing this as having a positive amplitude, but since we have destructive interference we're going to draw 1 s b as having the opposite sign, so we have a plus and a minus in terms of signs.
我们有,我们把这画成一个正的振幅,但因为我们是相消干涉,我们把1sb画成相反的符号,所以我们有一正一负两个符号。
So the expression I wanna draw first of all is the best response of Player I as a function of S2 and we agreed that that was given by 1 plus 1/4 now, 1 plus 1/4 S2.
首先我们想要绘制的表达式是,参与人I的最佳对策是S2的函数,我们都知道它等于1+S2/4
So if, in fact, we want to describe a wave function, we know that we need to describe it in terms of all three quantum numbers, and also as a function of our three positional factors, which are r, the radius, phi plus the two angles, theta and phi.
实际上,我们想描述波函数,我们知道我们需要,用这三个量子数来描述它,同样,波函数还是,三个位置变量的函数,它们是r半径,还有两个角度theta和。
Therefore, the vector A that you gave me, I have managed to write as i times Ax plus j times Ay.
这样,你给我的矢量 A,我已把它写成 i ? Ax + j ? Ay的形式
Initially, its location as a function of time is equal to i times x plus j times y.
初始时刻,它的位移作为时间的函数等于,i ? x + j ? y
应用推荐