Now, the coefficient that relates the amount of heat in to the temperature change is obviously going to be different for these two cases.
在这两个例子中,很显然联系热量和温度变化的系数,是不一样的。
In other words, how much does the temperature of the whole thing change when you put an ordinary amount of material in there and run a reaction, right. Well, what do you do?
当你放入通常数量的材料,并进行反应时,整个装置的温度,改变有多少,你要做什么?
So, for instance, if you take a glass of water and you pour it into another glass that's shallow or tall, it won't change the amount of water you have.
比如说,你有一杯水,将水倒进另一个更浅或者更深的杯子里,含水量并未发生任何改变
So we don't really need to put in a certain amount of heat and change the temperature of the products and the calorimeter and so on.
所以我们实际上并不需要输入,一定的热量,改变生成物,和量热计的温度之类。
Heat capacity relates the amount of heat that you add to the system to the change in temperature, and this is the relationship.
热容联系起给系统提供的,热量和温度的变化,关系式是这样的:
How many moles of gas are there in each case, in reactants and products? If that changes, of course you know that the pressure in there is going to change at constant volume if the amount of gas in there is changing.
在反应物和生成物中,各有多少摩尔的气体?,如果它发生了变化,当然在等体条件下,如果气体的总量,发生了变化,压强也会发生变化。
It's just how much heat is involved when we change the temperature. Now, the products have some heat capacity associated with them right, it takes a certain amount of heat if we make their temperature change, to either put it in or take it away, depending on which direction the temperature is changing.
问题就是当我们改变温度时,有多少热量发生了转移,生成物具有一定的热容,如果我们改变,它们的温度,就要输入或,提取一定的热量,这取决于温度改变的方向。
应用推荐