And this is what they had expected that there would be no relationship, but instead here they saw that there was a linear relationship not to the intensity and the kinetic energy of the electrons, but to the intensity and the number of electrons.
另外一个实验,他们预期这两者没有关系,但他们看到的不是,光强和电子动能的,线性关系,而是光强,和电子数的线性关系。
So, for example, here we're showing rubidium and potassium and sodium plotted where we're plotting the frequency -- that's the frequency of that light that's coming into the metal versus the kinetic energy of the electron that's ejected from the surface of the metal.
让大家看来都是可以理解的事情,就是把不同金属的观测结果,画到一张图里面来,例如这里,我们展示的是钠,钾,铷的频率-这是照射金属的光的频率,和金属表面出射电子动能的关系。
So, one thing they did, because it was so easy to measure kinetic energy of electrons, is plot the frequency of the light against the kinetic energy of the electron that's coming off here. And in your notes and on these slides here, just for your reference, I'm just pointing out what's going to be predicted from classical physics.
他们做的其中一件事,因为测量电子动能是很容易的,就是画出光的频率,和出射电子动能之间的关系,在讲义的这里,仅仅是,为了做个比较,我要指出,经典物理所给出的预测,这个不作为对你们的要求。
So that should mean that the energy that's transferred to the electron should be greater, but that's not what you saw at all, and what you saw is that if you kept the frequency constant there was absolutely no change in the kinetic energy of the electrons, no matter how high up you had the intensity of the light go.
所以这意味着转移到电子,上的能量也越大,但这并不是,我们观测到的现象,我们所看到的是,如果固定光的频率不变,不管光强如何变化,电子的动能没有任何变化。
应用推荐