• Even though the graph is going up and down, the object is moving from left to right.

    虽然图上曲线下波动,但是物体是由左向右移动的

    耶鲁公开课 - 基础物理课程节选

  • So the velocity at any part of the curve is tangent to the curve at that point.

    曲线任意一点的速度,都在该点和曲线相切

    耶鲁公开课 - 基础物理课程节选

  • So, what this lets us do now is directly compare, for example, the strength of a bond in terms of a hydrogen atom and hydrogen molecule, compared to any kind of molecule that we want to graph on top of it.

    因此,这让我们现在可以做到直接进行比较,比如,将一个氢原子,和一个氢分子的键的强度,与任何其它类型的分子进行比较,我们只需要把它的曲线也画在这幅图

    麻省理工公开课 - 化学原理课程节选

  • Usually we say it never goes down, we don't have it going down, cross that out.

    一般我们说它永远不会走低,从曲线来说,它不会下降

    耶鲁公开课 - 金融市场课程节选

  • That's where the marginal cost and the demand thing, demand lines intersect.

    应该是在边际成本,与需求曲线的交点

    耶鲁公开课 - 博弈论课程节选

  • As people's weights get high -I'm sorry let's go back here, got a little trigger happy here -as weights go high, from left to right you see the risk of Diabetes gets really very high.

    随着体重的升,抱歉,应该回到一张幻灯片,刚才按多了,在曲线从左到右,随着体重的升,患糖尿病的风险在迅速

    耶鲁公开课 - 关于食物的心理学、生物学和政治学课程节选

  • I can try other portfolios; this one right here--I'm pointing to a point on the pink line-- that point right there, 50% stocks, 50% bonds.

    还可以尝试其它组合;,这一点,粉色曲线我指的这一点-,表示50%的股票,50%的债券。

    耶鲁公开课 - 金融市场课程节选

  • You can see some of the points I've made along the blue line here.

    你们可以看到我在蓝色曲线标出了几个点。

    耶鲁公开课 - 金融市场课程节选

  • The curve includes points on it, which would represent the initial assets.

    曲线有许多点,这些点表示初始资产。

    耶鲁公开课 - 金融市场课程节选

  • So we found precisely one point on this best response picture, and there's a lot of points to find, and it's 20 past 12, so we better get going.

    现在我们只找到了最佳对策曲线的一点,我们还需要找到更多的点,现在12点20了,我们得快点了

    耶鲁公开课 - 博弈论课程节选

  • I'm not going to tell you what you want to do except to say, you would never pick a point below the minimum variance portfolio, right?

    我不是教你怎样去组合,当然了,你不会选择一个,曲线最小方差点以下的资产组合,对吧?

    耶鲁公开课 - 金融市场课程节选

  • At any point on the graph you can take the derivative, which will be tangent to the curve at each point, and its numerical value will be what you can call the instantaneous velocity of that point and you can take the derivative over the derivative and call it the acceleration.

    在图的任意一点,你可以进行求导,得到曲线每一点的切线斜率,所得到的数值,即为该点处的瞬时速度,然后你再求一次导,得出它的加速度

    耶鲁公开课 - 基础物理课程节选

  • If there were no credit markets, everyone would have to be on the production possibility frontier; there would be no other choice.

    如果没有信贷市场,每个人的收入水平都会落在PPF曲线,别无选择

    耶鲁公开课 - 金融市场课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定