So this tells you that it's electron structure that governs.
这告诉你们,都是电子结构在支配。
Great. Yup, it's going to be an electron acceptor, it wants to accept electrons, it wants to accept electron density.
很好,没错,它将是一个电子的受主,它想要接收电子,接收电子密度。
Let's imagine this is the electron in its orbit.
想象一下,电子在它的轨道中。
So what we're saying here is the incident energy, so the energy coming in, is just equal to the minimum energy that's required to eject an electron.
这里我们来讨论一下,入射能量正好等于,发射出一个电子所需要的最低能量的情况。
So let's draw the electron configuration of hydrogen, the molecule, molecular hydrogen.
让我们来画氢原子的,电子构型,分子,氢分子。
But at the time, they didn't have a well-formed name for it, they were just saying OK, there's this fourth quantum number, there's this intrinsic property in the electron.
但在那时,人们没有给它取名,他们只是说ok,这是第四个量子数,这是电子的本征性质,
And let's say our second electron now is really far away, such that it's actually not going to shield any of the nuclear charge at all from that first electron.
距离原子核非常非常近,我们说第二个电子处于非常远的位置,这样它不会对第一个电子,感受到的来自原子核的电荷量有任何屏蔽作用,我们最后要说的是。
So, that's actually the electron configuration we have when we're talking about copper and some other exceptions in the periodic table that you're going to be looking at.
因此,这才是铜原子真正的电子排布,而且我们在元素周期表中,会看到与铜原子类似的,其他例外的情况。
And we can also write this in an even simpler form, which is what's called electron configuration, and this is just a shorthand notation for these electron wave functions.
而且我们也可以将它,写为一个更简单的形式,它叫做电子构型,这个仅仅是这些电子波函数的。
So, the size still for an s orbital is larger than for a d orbital, but what we say is that an s electron can actually penetrate closer to the nucleus.
轨道的尺寸比,p轨道还是要大,但我们说的是s轨道可以,穿透到更接近原子核的地方。
This should make sense, because if an atom has a very high electron affinity, that means it's really happy taking an electron from another atom, or taking a free electron -- that that's very favorable.
这应该是合理的,因为如果一个原子有很高的电子亲和能,这意味着,它非常乐意从另外一个原子那里夺取一个电子,或者得到一个自由电子--这是非常利于发生的。
If we have a higher z effective, it's pulled in tighter, we have to put in more energy in order to eject an electron, so it turns out that that's why case 2 is actually the lowest energy that we need to put in.
而如果有效核电量更高,原子核的束缚也就更紧,我们不得不输入更多的能量来打出一个电子,这就是第二种情况,所需要输入的,能量更少的原因。
And the reason that they're the least sheilded is because they can get closest to the nucleus, so we can think of them as not getting blocked by a bunch of other electron, because there's some probability that they can actually work their way all the way in to the nucleus.
它们最不容易被屏蔽的原因,是因为他们可以更加接近原子,所以我们可以认为它们,最不容易被其它原子阻挡住,因为它们有一定的概率,离原子核非常近。
But what we're saying is there's a node here, so that there's no probability of finding an electron between those two points.
但我们说在节点这里,这两点是,不可能发现电子的。
And we know that it's electron density between the nuclei that holds two atoms together in a bond.
我们知道是两个原子核之间的,电子密度保持两个原子在一起成键的。
So we can use an equation to relate the incident energy and the kinetic energy to the ionization energy, or the energy that's required to eject an electron.
因此我们可以用一个公式将入射能量,与动能和电离能,就是发射出一个电子所需要的能量关联起来。
But before we get to that, in terms of thinking just think, OK, this is representing my particle, this is representing my electron that's what the wave function is.
但是在我们谈论那个部分之前,在理解方面,仅仅是理解,好的,它代表了粒子,它代表了电子,这就是波函数。
What people did is they said let's define a unit of energy that represents a unit charge accelerated across a unit potential difference, and let's call that the electron volt.
前人们所做的就是他们说让我们确定,一个能量单位用来代表一单位电荷,加速穿过形成的一单位电势差,我们叫它电子伏特。
And this spin is an intrinsic quality of the electron, it's a property that is intrinsic in all particles, just like we would say mass is intrinsic or charge is intrinsic.
自旋是电子的本征量,它是所有粒子的本征性质,就像我们说质量是本征的或者电荷是本征的。
The electron's going to come out of that highest occupied atomic orbital, that one that's the highest in energy, because that's going to be the at least amount of energy it needs to eject something.
这个电子应该是从,最高的被占据轨道上出来的,它的能级是最高的,因为这样的话发射出它,只需要消耗最少的能量。
So, if we want to think about what the first ionization energy is of boron, what you want to do is write out the electron configuration, because then you can think about where it is that the electron's coming out of.
如果我们要考虑,硼的第一电离能,你首先要做的是写出它的电子排布,因为在这之后,你才能知道拿走的是哪里的电子。
So, we see that the two h atoms separate have a certain energy that's lower than when the electron's not with the atom.
那么,我们看到两个分开的氢原子所具有的能量,比原子中没有电子时更低。
But the reason that I like that analogy is that it points out a very important part of spin, and that's the idea that it's a description of the electron.
但我喜欢这个类比的原因是因为,它指出了自旋非常重要的一面,那就是它是一种电子的描述。
I'm going to say that an electron's a wave no matter how much my father says differently, and I'm going to get a Nobel Prize for that, and he does.
我要说电子是一个波,无法这与我父亲的观点如何对立,我也要为此得到一个诺贝尔奖,他确实做到了。
It's called this just because it's an electron that results when an electron absorbs a photon's worth of energy, so thus it's a photoelectron.
之所以这样称呼是因为,当一个电子吸收,一个光子的能量的结果,因此它是一个光电子。
So it's just a measure of how much does one given atom want to pull away electron density from, let's say, an adjacent atom.
因此,它就是度量一个给定原子有多么,想把电子密度拉过来,可以说,从相邻的一个原子那里。
So, remember when we talk about Coulomb force, what's holding the nucleus and the electron together, there's 2 things we need to think about.
还记得我们在讨论库仑力的时候,提到是什么将原子核与电子束缚在一起时,有两点需要考虑。
It makes sense that it's going to come out of the highest occupied atomic orbital, because that's going to be the lowest amount of energy that's required to actually eject an electron.
从最高占据轨道上,去掉一个电子是合理的,因为这样是发射一个电子,所损失的最低能量。
So, as an example, let's take argon, I've written up the electron configuration here, and let's think about what some of the similarities might be between wave functions in argon and wave functions for hydrogen.
所以作为一个例子我们来看看氩,我已经把它的电子构型写在这里,我们来考虑氩和,氢波函数之间的,一些相似性。
So, let's write this one electron orbital approximation for berylium, that sounds like a pretty complicated question, but hopefully we know that it's not at all, 1s22s2 it's just 1 s 2, and then 2 s 2.
所以让我们写出,铍的单电子轨道近似,那听起来像是一个更为复杂的问题,但是希望我们知道它一点都不是,它仅仅是。
应用推荐