It can be spelled y-o-g-u-r-t or y-o-g-h-u-r-t.
VOA: special.2009.01.19
So instead of being equal to negative z squared, now we're equal to negative z effective squared times r h all over n squared.
这里不再等于-z的平方,现在我们等于-有效的z的平方,乘以RH除以n的平方。
And that's going to be equal to negative z effective squared times r h over n squared.
有效的z的平方,乘以RH除以n的平方。
are 39.H.R.3590 as amended, the Patient Protection and Affordable Care Act is passed,"
VOA: standard.2009.12.25
So we know that we can relate to z effective to the actual energy level of each of those orbitals, and we can do that using this equation here where it's negative z effective squared r h over n squared, we're going to see that again and again.
我们知道我们可以将有效电荷量与,每个轨道的实际能级联系起来,我们可以使用方程去解它,乘以RH除以n的平方,它等于负的有效电荷量的平方,我们将会一次又一次的看到它。
So the square root of n squared r e over r h.
这里的n值是什么呢?
So, we can get from these energy differences to frequency h by frequency is equal to r sub h over Planck's constant 1 times 1 over n final squared minus 1 over n initial squared.
所以我们通过不同能量,得到不同频率,频率等于R下标,除以普朗克常数乘以1除以n末的平方减去。
应用推荐